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Isothermal titration calorimetry (ITC) may be used to determine the kinetic parameters of enzyme-
catalyzed reactions when neither products nor reactants are spectrophotometrically visible and when
the reaction products are unknown. We report here the use of the multiple injection method of ITC to
characterize the catalytic properties of oxalate oxidase (OxOx) from Ceriporiopsis subvermispora (CsOx-
Ox), a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to car-
bon dioxide in a reaction coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin
enzyme identified that catalyzes this reaction. The multiple injection ITC method of measuring OxOx
activity involves continuous, real-time detection of the amount of heat generated (dQ) during catalysis,
which is equal to the number of moles of product produced times the enthalpy of the reaction (ΔHapp).
Steady-state kinetic constants using oxalate as the substrate determined by multiple injection ITC are
comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is
coupled to the horseradish peroxidase-catalyzed oxidation of 2,2′-azinobis-(3-ethylbenzthiazoline-6-
sulfonic acid) and by membrane inlet mass spectrometry. Additionally, we used multiple injection ITC to
identify mesoxalate as a substrate for the CsOxOx-catalyzed reaction, with a kinetic parameters com-
parable to that of oxalate, and to identify a number of small molecule carboxylic acid compounds that
also serve as substrates for the enzyme.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cereporiopsis subvermispora is a white rot basidiomycete fungus
that efficiently depolymerizes lignin [1] and is of interest in de-
grading biomass for the production of ethanol [2], sugar [3], and
methane [4]. Oxalate oxidase (OxOx) catalyzes the cleavage of the
carbon–carbon bond of oxalate to yield two moles of carbon di-
oxide as dioxygen is reduced to hydrogen peroxide [5]. While not
fully understood, the role of oxalate oxidase in C. subvermispora
(CsOxOx) has been proposed to provide a source of extracellular
hydrogen peroxide for manganese peroxidase to oxidize Mn2þ to
Mn3þ [6, 7], which is a robust and diffusible oxidant able to de-
grade many components of lignin [8]. Oxalate oxidase activity has
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been found in a number plant species including rice [9], wheat
[10], barley [11,12,13], beet [14,15], and sorghum [16,17] where it
has been shown to play roles in signaling and in the defense
against pathogenic microbes [18]. Plant OxOx enzymes possess a
single cupin (β-barrel) domain containing a single manganese ion
and are, therefore, structurally characterized and classified as
monocupins [19,20,21,22]. Sequence analysis indicates that
CsOxOx is the first manganese-containing bicupin enzyme iden-
tified that catalyzes the oxidation of oxalate [23,24,25].

Oxalate oxidase is of commercial interest for a number of ap-
plications including the determination of oxalate levels in blood and
urine [26,27], the protection of plants against pathogens, the pro-
duction of transgenic plants with reduced levels of oxalate [19,28],
pulping in the paper industry [19,29,30,31], and as a component of
enzymatic biofuel cells [32,33]. The utility of OxOx as a biocatalyst
for anodic electrode reactions in biofuel cells motivates efforts to
tailor the properties of the enzyme to this application through di-
rected evolution and/or rational design [34,35]. Understanding the
degree of promiscuity (or fidelity) of CsOxOx is an important
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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endeavor as it may provide a basis for these modifications. Previous
enzymatic characterization of CsOxOx employing a continuous
spectrophotometric assay in which H2O2 production is coupled to
the horseradish peroxidase (HRP) catalyzed oxidation of 2,2′-azi-
nobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) determined
that acetate and other small molecule carboxylic acid compounds
(malonate, malate, glycolate, glyoxylate, and pyruvate) reduced the
rate of oxalate oxidation at low concentrations of oxalate. Unin-
hibited maximal reaction rates could, however, be achieved at high
substrate concentrations, suggesting that these molecules were
competitive inhibitors [24]. Using the HRP coupled assay, none of
these molecules served as substrates.

Isothermal titration calorimetry (ITC) may be used to de-
termine the kinetic parameters of enzyme catalyzed reactions
even if the identity of the products are not known [36,37,38]. The
multiple injection ITC method of measuring OxOx activity involves
continuous, real-time detection of the amount of heat generated
(dQ) during catalysis, which is equal to the number of moles of
product produced times the enthalpy of the reaction (ΔHapp).
Determination of the kinetic parameters of a reaction using this
method, therefore, requires two experiments 1) determination of
the enthalpy of the reaction from the complete conversion of
substrate to product, and 2) determination of the differential
power effects from the continuous conversion of substrate to
product. We report here the use of ITC to characterize the catalytic
properties of oxalate oxidase through the direct and continuous
detection of the amount of heat generated. Furthermore, we used
multiple injection ITC to identify mesoxalate (oxopropanedioic
acid) as a substrate for CsOxOx with a kinetic parameters com-
parable to that of oxalate and to identify other small molecule
carboxylic acids (that were previously shown to be competitive
inhibitors) as substrates for CsOxOx.
2. Materials and methods

2.1. Materials

Recombinant oxalate oxidase from C. subvermispora was ex-
pressed and purified as a secreted soluble protein using a Pichia
pastoris expression system as previously described [24].

Reagents were of the highest purity available and were purchased
from either Sigma-Aldrich or Fisher Scientific unless otherwise stated.
A modified Lowry assay (Pierce) was used to determine protein con-
centration using bovine serum albumin as a standard [39].

2.2. Coupled steady-state kinetic assay

The oxalate oxidase-catalyzed oxidation of oxalate was mea-
sured using a continuous, coupled spectrophotometric assay in
which the formation of hydrogen peroxide is coupled to the HRP-
catalyzed oxidation of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sul-
fonic acid) (ABTS) [13]. Each assay contained 25 U HRP, 5 mM
ABTS, 50 mM potassium oxalate, and 1 mM CsOxOx dissolved in
the indicated buffer, pH 4.0 (total volume 1.0 mL) and was mon-
itored at 650 nm. An extinction coefficient of 10,000 M�1 cm�1 for
the ABTS radical product was used in the rate calculations. Control
samples without HRP were carried out in order to distinguish
between H2O2 production and any oxalate-dependent dye oxida-
tion activity by CsOxOx. Reactions were carried out at specific
substrate and enzyme concentrations in duplicate, and data were
analyzed to obtain the values of Vmax and Vmax/Km by standard
computer-based methods [40].
2.3. Isothermal titration calorimetry

Calorimetric measurements were performed using a Nano ITC
Low Volume (TA Instruments) equipped with a 24 K gold reaction
cell (190 mL volume). Degassed solutions were equilibrated at
25.0 °C with stirring at 125 rpm. A 50 μL stirred syringe inserted
into a buret handle was used to inject substrate into the sample
cell. Water was used in the reference cell. Heat (Q) produced from
the chemical reaction between enzyme and substrate was mea-
sured by the continuous supply of instrumental thermal power
(dQ/dt) to the sample cell, which maintains isothermal condition
between the sample cell and reference cell. Thermal power relates
to enzyme reaction rate:
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where V is the volume of the solution in the sample cell, ΔH is the
apparent enthalpy, and (d[P])/dt is the enzyme reaction rate.
When Eq. (1) is solved for (d[P])/dt, the resulting equation is:
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Protein samples were exhaustively dialyzed into the reaction
buffer (25 mM sodium succinate, pH 4.0) and substrate solutions
were prepared in the resulting dialysate. Enzyme concentrations
for the rate determinations ranged from 112 nm to 456 nM as
described in the Two blank reactions were performed for each
condition tested: 1) the injection of substrate into buffer and 2)
the injection of buffer into enzyme solution. These blank heat ef-
fects were subtracted to yield the corrected heat rate of reaction.
NanoAnalyze (TA Instruments Inc.) was used to transform the raw
ITC data into reaction rates according to Eqs. (1) and (2) above and
to obtain the values of kcat and Km. The instrument is an overflow
calorimeter and the volume, therefore remains constant, but the
number of moles does change as volume is displaced. This is
tracked in the NanoAnalyze software.

2.4. Calorimetric determination enthalpies of reaction

The apparent molar enthalpies of oxalate and other possible
substrates were determined by measuring the power required to
maintain constant temperature in conditions where the reaction
proceeded to completion. These conditions required the use of
higher enzyme concentrations (1 mM) and lower substrate con-
centrations (2 mM) than the corresponding rate determination
experiments. Upon complete consumption of substrate, the power
returned to baseline. The experimental enthalpy relates to the area
under the curve (less the blank heat of the mixing event) ac-
cording to Eq. (3).
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3. Results and discussion

3.1. Direct detection of CsOxOx activity

Direct measurement of enzymatic reaction rates has numerous
advantages over a coupled assay. Previously, we reported the use of
membrane inlet mass spectrometry (MIMS) as a direct and con-
tinuous method to measure oxalate oxidase activity [41]. In the
MIMS assay method, 13C doubly labeled oxalate is used to distin-
guish the CO2 generated by CsOxOx from adventitious CO2 dis-
solved in the reaction mixtures. Since the use of labeled substrates



Fig. 2. Thermogram monitoring the power required to maintain isothermal con-
ditions of 20 successive injections of 2 mL of 20 mM oxalate into 112 nM oxalate
oxidase (180 mL) previously thermally equilibrated at 25 °C. Under these conditions,
when the enzyme velocity reaches a new steady state, the power remains constant.
The inset corresponds to the first four injections of substrate into the sample cell
and the arrows represent the decrease in the heat flow (dQ/dt) required to maintain
thermal equilibrium at each steady state condition.
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places constraints of expense and availability on the molecules
tested for activity as substrates, we investigated the applicability of
the multiple injection method of isothermal titration calorimetry
for the direct detection of the CsOxOx-catalyzed oxidation of
oxalate.

The steady-state kinetic parameters of CsOxOx are sensitive to
the buffer in the reaction mixture [24]. Steady-state measure-
ments using the coupled assay carried out in acetate buffer, pH
4.0 resulted in a Vmax value of 21.2 U/mg, which compares favor-
ably with the value obtained for the native enzyme [42]. The Km

for oxalate, measured in acetate buffer, however, is 14.9 mM,
which is significantly higher than the 0.1 mM value reported for
the native enzyme. Succinate buffer, pH 4.0 yields a Km value for
oxalate of 1.5 mM while citrate buffer, pH 4.0 yields a Km of
0.1 mM. The Vmax in citrate is, however, reduced (Vmax¼8.1 U/mg)
and the addition of succinate increases the activity of the citrate-
inhibited enzyme [24]. These results suggest that citrate may be an
uncompetitive inhibitor. Succinate appears to displace citrate
without inhibiting the enzyme. There is no evidence for succinate
inhibition. Using these conditions, we determined the apparent
enthalpy of the CsOxOx reaction by measuring the amount of heat
exchanged during the complete conversion of substrate into pro-
duct. A typical calorimetric trace (heat flow as a function of time)
is shown in Fig. 1. The 180 mL reaction containing 1 mM CsOxOx
was allowed to reach thermal equilibrium at 25 °C before begin-
ning the experiment. The baseline was collected for 1 min then the
reaction was initiated by the addition of oxalate (prepared in the
enzyme dialysate) to a final concentration of 10 mM. The response
time of the instrument was observed to be about 18 s, after which
the thermal power generated by the enzyme registered as off-
setting instrumental thermal power. The instrumental default
setting of plotting exothermic events in the upward direction was
left intact. After the complete consumption of the substrate, the
power returned to the original baseline. Four hundred seconds
after the first injection, a second identical injection was made into
the same reaction mixture (now containing product), which re-
sulted in a calorimetric trace almost identical in area and shape. A
blank titration of oxalate into buffer was collected (data not
shown) and its heat was subtracted from that of the substrate into
enzyme titration, resulting in an experimental ΔHapp value of
�5.670.3 kJ/mol (uncertainty represents curve fitting errors).

3.2. Steady-state kinetic characterization of the CsOxOx catalyzed
reaction by ITC

The differential power effects from the continuous conversion
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Fig. 1. Heat flow as a function of time for the CsOxOx-catalyzed complete con-
version of oxalate into products gives the ΔHapp of reaction. After equilibration at
25 °C (not shown), the reaction was initiated by the addition of 1 mL of 2 mM po-
tassium oxalate, pH 4.0 into 1 mM CsOxOx (180 mL) in 50 mM sodium succinate, pH
4.0 (first arrow). This injection was repeated at 500 s (second arrow).
of oxalate to carbon dioxide and hydrogen peroxide is shown in
Fig. 2. After thermal equilibration, injections of oxalate were made
every 200 s into a solution originally 114 nM CsOxOx, resulting in
final oxalate concentrations ranging from 0.200 mM to 3.700 mM
(due to volume displacement). The rate of the uncatalyzed reac-
tion is negligible and the plateaus reached between injections
indicate that at each new concentration of substrate a new con-
stant [ES] is achieved. The inset in Fig. 2 shows the first four in-
jections of oxalate into the sample cell and the arrows represent
the decrease in the instrumental power required at each equili-
brium condition (dQ1/dt, dQ2/dt, and dQ3/t). The Michaelis–Men-
ten equation was used to fit these data (Fig. 3). The set in Fig. 3
displays the same data in a Lineweaver–Burk plot. The kinetic
parameters are shown in Table 1 along with those determined by
the membrane inlet mass spectrometry assay [41] and the horse
radish peroxidase coupled assay [24]. There is good agreement
among the three methods.

3.3. Mesoxalate is a substrate for CsOxOx with kinetic parameters
comparable to those of oxalate

Given the interest in oxalate oxidase as a component of enzy-
matic biofuel cells [32,33], we tested the ability of CsOxOx to
catalyze a reaction using mesoxalate as the substrate. A typical
heat flow versus time plot for the reaction catalyzed by CsOxOx
Fig. 3. Rate versus oxalate concentration data from Fig. 2 fitted to the Michaelis–
Menten equation to give kinetic parameters provided in Table 1. The inset shows
the same data in a double reciprocal plot yielding the nearly identical values of kcat
and Km as the fit to the Michaelis–Menten equation.



Table 1
Steady-state kinetic parameters for the CsOxOx-catalyzed oxidation of oxalate
measured by ITC, membrane inlet mass spectrometry, and the horse radish per-
oxidase coupled assay. Uncertainties represent standard errors in the fit to the
Michaelis–Menten expression.

Assay Km (oxalate), mM kcat, s�1 kcat/Km, mM�1 s�1

ITC 0.8670.1 15.670.3 18.070.3
MIMSa 0.9370.1 22.370.3 24.070.4
ABTSb 1.570.1 20.070.4 13.370.4

a Data previously reported in [41].
b Data previously reported in [24].

Fig. 4. The heat flow as a function of time for the reaction catalyzed by CsOxOx
using mesoxalate as substrate measured in conditions of steady-state kinetics at
25 °C. The sample cell contained 180 mL of 456 nM CsOxOx and 20 injections of
2.5 mL of 10 mM mesoxalate were performed with an interval of 180 s between
them. The inset shows the rate versus mesoxalate concentration data fitted to the
Michaelis–Menten equation to give kinetic parameters provided in Table 2 for
mesoxalate.

Table 2
Steady-state kinetic parameters for the CsOxOx- catalyzed oxidation of alternative
substrates measured by ITC. Uncertainties represent standard errors in the fit to the
Michaelis–Menten expression.

Substrate Km, mM kcat, s�1 Relative activitya, %

Oxalate 0.8670.1 15.670.3 100
Mesoxalate 0.5270.1 9.970.3 63.5
Glyoxalate 7.1070.1 0.4670.1 2.9
Malonate 6.4270.1 3.2170.1 20.5
Pyruvate 2.8970.1 1.2570.1 8.0
Malate �ndb ndb o0.01

a Activity relative to that with oxalate in 50 mM sodium succinate, pH 4.0.
b Values were too low to be determined.
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using mesoxalate as substrate under steady-state kinetics is shown
in Fig. 4. In the experiment shown, the sample cell contained
180 mL of 456 nM CsOxOx and 20 injections of 2.5 mL of 10 mM
mesoxalate (final concentrations ranged from 0.125 to 2.224 mM)
were performed with an interval of 180 s between them. Although
the shape of the data was not an ideal rectangular hyperbola, the
steady state data was fit to the Michaelis–Menten equation (inset)
and converted to a rate by the enthalpy of reaction. The kinetic
parameters obtained are reproducible, the observed anomalies
between the data and the Michaelis–Menten fits, however, vary
due to the small heat changes being measured and because the
quality of the data depends of factors such as movement in the lab
and slight electrical changes due to nearby equipment switching
cycles. Our best ITC data is often collected when these dis-
turbances are minimized such as evening and weekends. The heat
flow as a function of time for the CsOxOx-catalyzed complete
conversion of mesoxalate into product to determine the ΔHapp of
reaction (�3.1 kJ/mol) is presented as Supplementary Fig 1. The
Km¼0.5270.1 mM for the reaction using mesoxalate, which is
slightly lower than for the reaction using oxalate (Table 2). The
kcat¼9.970.3 s�1, which is two thirds of the rate using oxalate as
determined by ITC. The ABTS dye oxidation assay results in a 20-
fold lower kcat value (0.5 s�1) and a Km value of 29 mM (data not
shown). We propose that the predominant products of the CsOx-
Ox-catalyzed reaction of mesoxalate are glyoxalic acid and carbon
dioxide, making this reaction transparent in the ABTS assay. We
have used membrane inlet mass spectrometry to detect carbon
dioxide formation (data not shown) but are unable to quantify the
rate without 13C labeled mesoxalate, which is currently prohibi-
tively expensive. In pondering why a secreted enzyme of a white
rot fungus would use mesoxalate as a substrate, we found that the
common reed (Phragmites australis) secretes gallic acid, which is
photodegraded into mesoxalate in order to ward off encroaching
plants [43].

3.4. CsOxOx is a promiscuous enzyme

The observation that mesoxalate serves as a substrate for the
CsOxOx-catalyzed reaction prompted the reevaluation of molecules
that had previously been shown to be competitive inhibitors using
the spectrophotometric ABTS assay [24]. Table 2 shows the kinetic
parameters of glyoxalate, pyruvate, and malonate determined by
measuring thermal power compensation during turnover using the
ITC (Supplementary information). Malate does not serve as a sub-
strate for CsOxOx using this method (data not shown). These results
reveal that CsOxOx possesses a much higher degree of substrate
promiscuity than was previously thought. Future work to under-
stand the amino acid residues involved in this promiscuity may
provide insight into the evolutionary route CsOxOx has traveled and
inform a path toward its modification for its use in the oxidation of
fuel molecules in enzymatic cells.

In summary, we have demonstrated the use of ITC provides a
sensitive assay for oxalate oxidase and we have used this technique
to reveal that CsOxOx uses mesoxalate with kinetic parameters
comparable to those for oxalate. Additionally, we have shown that
CsOxOx uses a variety of small molecule carboxylic acids as sub-
strates. We anticipate that this technique will find broad application
in the field of bioelectrocatalysis where, because of dye interactions
with redox enzymes, dye-based spectroscopic assays frequently
show different behavior than electrode based assays.
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