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I. Introduction
By any measure, the 1990s is the decade of the

genome. Sequences of the chromosomes of two eu-
bacteria (Haemophilus influenzae and Mycoplasma
genitalium),1,2 one archaebacterium (Methanococcus
jannaschii),3 and one eukaryote (Saccharomyces cer-
evisiae, bakers’ yeast)4 have appeared, and several
other completed microbial genomes will be an-
nounced while this review is in press. Before the
decade is out, the genome of the worm Caenorha-
biditis eleganswill be added to this collection,5 as will
perhaps several dozen further genomes of microor-
ganisms. The genomes for a plant and man will be
complete soon thereafter. These will supplement
sequences from dozens of other organisms whose
genomes are not being comprehensively sequenced,
but are being studied in laboratories around the
world.
Organic chemistry has always been driven by the

discovery of new natural products, elucidation of their
structures, and exploration of their behaviors. The
genome sequence database provides an enormous
new collection of natural products to study. These
display every behavior important in chemistry: con-
formation, supramolecular organization, combinato-
rial assembly, and catalysis are just a few. Every
branch of chemistry will therefore be advanced as the
chemistry of the natural products in the genomic
databases is explored in the postgenomic world.
Further, through an evolutionary picture of how
these molecules arose, an understanding of biological
function will come from the chemical structure of
molecules, allowing natural history to join coherently
the physical and life sciences.
This review focuses on the first of the “chemical”

behaviors displayed by these natural products: con-
formation. Conformation defines how a molecule

exists in three dimensions when it has achieved a
(presumably global) energy minimum after searching
through all rotational degrees of freedom. In protein
chemistry, conformation is referred to variously as
the fold, secondary and tertiary structure, or some-
times simply “structure”. From conformation comes
many other physical and physiological properties of
proteins. The review is directed toward the nonspe-
cialist, a chemist or biochemist who knows something
about structural biology in general and wishes to
understand more about how conformational analysis
for proteins is developing in light of genomic data.

A. Why Is the Protein Conformation Problem
Hard?
The “protein structure prediction problem” is the

classical unsolved problem in protein chemistry. It
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is difficult for many reasons, all of which are impor-
tant as we consider how it might be solved.
First, proteins are big, especially when compared

with the molecules that have long been the focus of
conformational analysis in organic chemistry. Pro-
teins typically contain 100-1000 amino acids, or
1000-20000 atoms. Every peptide unit in the
polypeptide chain has two rotational degrees of
freedom (Figure 1), assuming that the amide bond
itself is planar and lies exclusively in the “trans”
conformation. One degree of rotational freedom is
around the bond joining the carbonyl carbon and the
R carbon of the amino acid. The second is around
the bond joining the R carbon and the nitrogen
(Figure 1). These are often known as the ψ and φ
angles.6 Flexibility in the side chains adds additional
rotational degrees of freedom to the molecule. To-
gether, these make the conformational energy sur-
faces associated with protein sequences enormous,

especially when compared with those of molecules
traditionally studied by chemists. It is difficult to
search a surface this large, and considerable effort
has been devoted to developing ways to do so.7-9

Second, understanding conformation is difficult in
proteins because it is difficult in all molecules, even
molecules much smaller than a typical protein. The
protein conformation problem is intricately connected
with questions that lie at the heart of physical chem-
istry: How do we describe the interaction of two
molecules with each other? How do we describe the
interaction of ensembles of molecules? Answers for
these questions for simpler systems have not yet been
found, although impressive progress has been made
in this area in the past few years.10-14 There is today
no method, automated or manual, parameterized or
ab initio, that precisely predicts the conformation of
any organic molecule in solution. Conformation is
especially poorly understood in strongly interacting
solvents such as water, the environment where most
globular proteins exist physiologically.
If this were not sufficient, evolutionary issues

unique to biological molecules such as proteins sug-
gest that predicting conformation should be especially
difficult.15 Natural selection seeks biomolecules that
contribute to survival, mate selection, and reproduc-
tion in their host organism. A protein with extreme
conformational stability is rarely desired by natural
selection, if only because a cell living in a changing
environment is continually degrading proteins to
reuse their constituent amino acids to make new
proteins. Thus, natural selection typically seeks a
protein that unfolds at a temperature only a
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Figure 1. The two rotational degrees of freedom in an
amino acid, designated by the dihedral angles φ and ψ, give
a peptide chain its flexibility.
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few degrees higher than the physiological tempera-
ture for an organism.15
If a protein obeys all of the “rules” of folding,

excessive conformational stability is possible, how-
ever.15 The conformational stability of proteins from
thermophiles, the ease with which point mutation
can increase conformational stability, and the insolu-
bility of a typical peptide (remembering that precipi-
tation, where a peptide interacts with other peptides
rather than with solvent, is a “folding” process) is
evidence for this.
Thus, selective pressures create proteins that are

conformationally unstable relative to the stability
that could be achieved if a protein were to exploit all
of the stabilizing interactions available to a typical
polypeptide chain.15 This implies that natural pro-
teins violate folding “rules” to achieve a desired level
of instability. This, in turn, implies that even if the
chemist learns the “rules” that confer conformational
stability on molecules, and can apply them to large
molecules such as proteins, natural protein sequences
will deceive the chemist attempting to apply these
rules to predict their conformations.

B. The Focus of This Review. Evolution-Based
Structure Prediction
The fact that natural proteins are the products of

divergent evolution creates opportunities as well as
problems when developing tools for predicting con-
formation from sequence.10,15-21 Proteins in the
modern world almost never come alone. Rather,
Nature presents sets of homologous proteins (proteins
related by common ancestry) performing analogous
functions in different organisms. As long as their
genes have continuously performed a function since
they divergently evolved, homologous proteins retain
their overall conformation. Indeed, this conformation
can be retained long after sequence similarity has
been lost in statistical noise.22,23 This is quite dif-
ferent from the conformational behavior of a “ho-
mologous series” of compound in organic chemistry,
a set of compounds differing in the length of a chain,
where conformation between members need have no
similarities. Natural selection acting on homologous
proteins divergently evolving under functional con-
straints is the reason for this difference.
For this reason, a set of sequences of proteins

within a family of homologous proteins contains more
information about conformation than a single se-
quence or a single member of the family.15,21,24-29 The
set of protein sequences is a set of different molecular
structures that achieve (more or less) the same
conformation.
This review begins with this fact and will focus on

methods that build models for the conformation of a
protein family from a set of homologous protein
sequences. These are by necessity consensus models
of protein conformation, those that describe features
of conformation that are conserved among all of the
members of the protein family. We will focus in
particular on secondary structure, the local conforma-
tion of a protein. The R helix and the â strand are
the standard elements of secondary structure.
Second, this review focuses on ways of building

consensus models of conformation that exploit an

increased understanding of how functioning proteins
suffer point mutation, insertion, and deletion during
divergent evolution. This insight has come from the
revolution in genomics. Advances have come in
many sectors, including Web sites that provide access
to sequences,30 improved tools for comparing the
sequences of proteins related by common ancestry,31-33

new schemes for classifying organisms,34 new ideas
relating the in vitro behavior of proteins to their
physiological function in vivo,35 and experiments that
have reconstructed in the laboratory ancient biologi-
cal macromolecules from extinct organisms to permit
experimental evaluation of evolutionary models.36-39

From these studies have come improved models
describing the divergent evolution of proteins at the
molecular level. These models permit an approach
to predict protein conformation that is “transparent”
to the user.
The concept of transparency in structure prediction

has an analogy in conventional conformational analy-
sis in chemistry. In small molecules, conformation
can be studied by using a computationally intensive
tool based on quantum mechanics or molecular
mechanics. Or it can be studied by hand. The latter
approach is very familiar to students of organic
chemistry, who build ball-and-stick models of mol-
ecules, inspect these by eye for steric interactions (for
example), and use the process to understand molec-
ular conformation. The quantum mechanical calcu-
lation is arguably more fundamental than an analy-
sis that involves a physical model of a molecule and
human intervention. Yet the ball-and-stick model is
ultimately more satisfying to the chemist, who feels
that it yields more of an explanation of molecular
behavior. Further, the history of chemistry has
shown that transparent approaches for analyzing
conformation (as well as other properties of organic
molecules) have been more powerful as a way to
generate new ideas than purely computational ones.
Computationally intensive approaches to model

protein conformation are also available, generally
based on molecular mechanics tools and a variety of
force fields. These are reviewed elsewhere,40-44 and
will not be discussed here. Rather, we will focus on
the “ball-and-stick” approach for modeling protein
structure, an approach made possible by our im-
proved understanding of the molecular details of
evolution at the level of the protein molecule. These
allow the user to understand why a prediction is
made, how it might fail, and why it works (when it
works). Such transparent analyses of protein con-
formation also allow a more rational design of predic-
tion heuristics.45

The third focus of this review is a recent trend
toward testing methods for predicting protein con-
formation using bona fide predictions, those made
and announced before an experimental conformation
has been determined.46-49 The term bona fide (mean-
ing “genuine” 50 without pejorative overtones) reflects
the widespread practice in the field of using the word
“prediction” to denote “retrodiction”,51 where a tool
is used to build a model of the conformation of a
protein whose structure was known at the time that
the tool was applied. Certainly in the late 1980s and
early 1990s, a typical title in the field that reported
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a method for “prediction” of protein secondary struc-
ture at (for example) 70% accuracy meant a method
that was developed and tested by retrodiction.
As discussed below, bona fide predictions are an

integral tool of any scientific analysis of molecular
conformation. Bona fide predictions have proven to
be important to the field for sociological reasons as
well, however, and these require some comment.
Many experimental biochemists have come to find
unpersuasive any evaluation of structure prediction
methods tested retrodictively.52 Over several de-
cades, methods that performed well when tested
retrodictively were found to perform worse when
tested on new proteins.53 This was especially the
case in structure prediction “contests”, where knowl-
edge of the conformation of the target structure was
explicitly withheld from those making predictions.
With a notable exception of the first such contest,54
results were largely disappointing in comparison with
expectations based on retrodictions of protein con-
formation using the same methods.55-57

As discussed below, this phenomenon can arise in
many ways, many of which are innocuous. However,
by the early 1990s, many experimental biochemists
came to believe, correctly or incorrectly, that proce-
dures for predicting features of protein conformation
from sequence data will always perform substantially
worse than they perform in retrodictive tests. In
many circles, it came to be feared that they might
never work at a level to make them useful.58

As a result, a relatively small number of bona fide
predictions that later proved, in the opinion of
independent judges, to have been “remarkably
accurate”,59-62 has transformed the outlook of the
field in a way that would have been impossible by
any other approach. The resulting impact has been
especially important to scientists not directly in-
volved in the structure prediction field.
The review will combine these three elements:

evolutionary analysis, bona fide prediction, and
transparency. The review attempts to be compre-
hensive up until January 1, 1996. Further, during
the period of time that elapsed since this review was
first prepared, a second “Critical Assessment of
Structure Prediction” (CASP)49 project was com-
pleted. The results of this project are included where
they meet the scope of the review. The review
therefore covers all bona fide predictions made to that
date that relied on transparent prediction methods
applied to a set of homologous sequences. We have
erred on the side of inclusiveness. Many predictors
are now combining transparent and nontransparent
methods in their analysis; we have attempted to
include these as well.
The review is set in four parts.
(a) First, approaches to evaluate the quality of

predictions of secondary structure will be discussed.
Predictions made by prediction tools must be evalu-
ated to learn whether the tools are being improved,
of course. The evaluation problem itself raises
important scientific issues, however, and it is es-
sential to sort these out before we attempt to evaluate
the output of transparent prediction methods.
(b) Next, the introduction of evolutionary ideas into

the field of protein structure prediction will be traced.

This will require an abbreviated discussion of clas-
sical prediction methods that incorporate no evolu-
tionary models, starting in the 1970s. We cannot
duplicate the many excellent reviews of the field; an
especially valuable collection of reviews to the end
of the 1980s was edited by Fasman.63 This review
will instead present classical methods in a way that
allows the reader to understand how they have
contributed to evolution-based methods that are the
focus of this review, and how their procedures and
results differ from evolution-based methods.
(c) We will then show how the availability of

massive amounts of sequence data emerging from
genome projects has yielded an improved understand-
ing of how sequences evolve subject to “functional
constraints”, that is, how amino acid substitutions,
insertions, and deletions take place in real proteins
that must fold and perform functions in real organ-
isms. We will show how improved models of molec-
ular evolution have guided the development of tools
for secondary structure prediction in proteins.
(d) Last, we will illustrate how transparent meth-

ods based on evolutionary analysis have been tested
through bona fide prediction by bringing together
examples where evolutionary analysis has been used
to predict the secondary structure of proteins.
Finally, the average chemist or biochemist is not

as computer literate as the average informaticist
working in the field of structure prediction. The past
few years has seen a proliferation of computer
programs and tools, some commercial, some available
on the Web, some simply reported in journal articles.
We present a selective compilation of these in a
“Glossary” and “Appendix” at the end of this review,
chosen to include those that will be the most inter-
esting to the nonspecialist. The reader should rec-
ognize that this list is out of date even as it is being
prepared. But it is a start.

II. Evaluating Predictions. How Do We Recognize
Progress?

We must first address an issue that appears
technical, but actually contains an important un-
solved scientific problem: What tools should be used
to evaluate prediction methods? As it turns out, this
apparently simple question contains many levels of
complexity.
Consider a simple task, to evaluate a secondary

structure prediction made for a single protein. Let
us assume that the secondary structure prediction
assigns to segments of the protein sequence one of
three secondary structural types: R helix, â strand,
and coil (a conformation of the backbone that is
neither a helix nor a strand). Such a prediction
could, it seems, be evaluated by comparing the
predicted secondary structure, residue-by-residue,
with an experimental secondary structure. Compar-
ing the experimental secondary structure, residue-
by-residue, with the predicted secondary structure
should yield a “three-state residue-by-residue score”,
sometimes known as “Q3”, the percentage of residues
correctly assigned to one of three states (helix, strand,
or neither). Q3 would seem to be an objective
measure of the quality of a prediction.64,65
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A. Scoring Problem 1: The Definition of
Secondary Structural Units (Helix and Strand) Is
Subjective
More detailed consideration shows that the Q3

score is subjective in several important ways. First,
there is no such thing as an “experimental secondary
structure”. The experimental data produced by X-ray
crystallography (or by NMR) are a set of coordinates
for atoms in a protein. Secondary structure is an
abstraction of these coordinates. Converting the
primary experimental data into an assignment of
secondary structure requires definitions (What is an
“R helix” or a “â strand”?). These definitions are
themselves subjective.
Consider three different ways to define secondary

structure in terms of coordinates. In one, secondary
structure is defined by the two dihedral angles in the
polypeptide backbone that undergo free rotation
(Figure 1). The φ and ψ angles of amino acids in
natural proteins are conveniently presented on a
Ramachandran diagram (Figure 2).6 In natural
proteins, certain combinations of dihedral angles are
more populated than others, and certain regions of
the Ramachandran diagram are defined as holding
amino acids in “R helices”, and others hold “â
strands”. Amino acids with dihedral angles lying
outside of these regions are defined as “coil”. Thus,
arbitrarily placed regions on the Ramachandran
diagram defines “three states” that might be used to
score a secondary structure prediction, where the
dihedral angles of individual amino acids are ex-
tracted from crystallographic coordinates.
This definition of secondary structure is inadequate

for evaluating a prediction, however. A single amino
acid may have φ and ψ angles squarely in the middle
of the region of the Ramachandran diagram that
defines an R helix, but still not be a part of a helix.
An R helix is stabilized by hydrogen bonding between
backbone atoms coming from amino acids four posi-
tions removed in a chain. In a â sheet, the NsH and
CdO groups of the backbone participate in hydrogen
bonds to CdO and NsH groups in other strands still
more distant in the sequence. Whether or not a
particular residue is part of a helix or strand depends,
therefore, in part on the conformation of other amino
acids in the polypeptide chain, and their ability to
form hydrogen bonds to the residue in question.
Instead, helices and sheets might be defined by the

presence of these hydrogen bonds. For idealized
data, this is a powerful tool for assigning secondary

structure. Indeed, a more detailed description of
secondary structural types, including 310 helices, π
helices, and various types of bends and turns can be
obtained by a careful analysis of hydrogen bonding
patterns.66 Crystal structures of proteins generally
do not have the resolution needed to see hydrogens,
however, meaning that the positions of hydrogens
and hydrogen bonding patterns must be inferred from
the positions of heavy atoms. Further, the dynamic
behavior of protein structures, together with the
occurrence of distorted secondary structural ele-
ments, means that not all helices and strands evident
to a human eye inspecting a crystal structure are
identified using programs that search for hydrogen
bonding. In the discussion below, we will see specific
examples where â hairpins and R helices are missed
by the automated assignment program, even though
these structures are evident by visual inspection of
the structure and are conserved throughout the
evolution of a protein family.
A third way to define secondary structure relies on

the relative orientation of the side chains in a
polypeptide chain. In an R helix, the side chain of
an amino acid protrudes from a cylinder approxi-
mately 1.5 Å along the helix axis, and ∼100° around
the helix axis, relative to the side chain of the amino
acid preceding it in the chain. This relationship is
graphically described by a Schiffer-Edmundson heli-
cal wheel,67 which is a projection of a helix down its
long axis to view the relative disposition in space of
the amino acid side chains (Figure 3). The side
chains in a â strand alternate above and below the
sheet. As the side chains of all amino acids (except,
of course, glycine) contain heavy atoms, the relative
orientation of side chains is easily seen in crystal
structures with satisfactory resolution.
As “secondary structure” is an abstraction of the

human intellect, no one of these definitions is more
correct than another. What is clear, however, is that
the different definitions need not yield the same
experimental secondary structure assignments from
the same set of experimental coordinates.63 The
subjective nature of experimental secondary struc-

Figure 2. Ramachandran plot showing the (arbitrary)
boundaries between values of φ and ψ that indicate â
strands (â) R helices (R), and coils (the remainder of the
diagram).

Figure 3. Schiffer-Edmundson helical wheel showing the
position of hydrophobic and hydrophilic amino acids in the
C-terminal R helix of adenylate kinase. This particular
relative orientation of the side chains can be used as a
definition of a helix.53
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ture assignments was quantitated by Colloc’h et al.,68
who compared three automated tools (DSSP,66 P-
curve,69 and Define70) that assign secondary structure
to crystallographic data. The P-curve program iden-
tifies regularities along the helicoidal axis in a
polypeptide in assigning secondary structure, DSSP
considers hydrogen-bonding patterns, while Define
measures distances between C-R atoms. Colloc’h et
al. asked what percentage of the residues in the
protein received the same secondary structural as-
signment by all three methods applied to the very
same coordinate data. The answer was a strikingly
low 63%.68 This number is especially relevant con-
sidering that current secondary structure prediction
heuristics are routinely yielding three-stateQ3 scores
of approximately 70% (see below).
One specific example of this problem is shown in

Figure 4. The figure shows two published experi-
mental secondary structures determined for the same
protein, the src homology 3 (SH3) domains of the
phosphatidyl-inositol-3-kinase (PI3K) from ox and
man.71,72 Both experimental structures were deter-
mined by NMR spectroscopy. Except for a single
amino acid, the sequences of the two proteins are
identical. By eye, the folds are indistinguishable. Yet
the two experimental secondary structures (Figure
4), taken directly from the papers reporting those
structures, agree at only 73% of the positions.
This means that if experimental structure 1 in

Figure 4 were to be judged using experimental
structure 2 as a reference, the resulting Q3 would be
only 73%, even though the target and reference
secondary structural assignments being compared
are experimental, are obtained on proteins with
essentially the same sequence, and the conformations
of the two proteins are essentially identical.
This is bad enough. Still worse is the fact that we

can construct an entirely hypothetical secondary
structural model (the line labeled “Hypothetical 1”
in Figure 4) that completely obliterates the fact that
the core fold of the SH3 domain is built from â
strands; Hypothetical 1 models the protein instead
as largely helical. This hypothetical model is quite
wrong. But it also gives a Q3 score of 73%.
An alternative approach is to score segment-by-

segment instead of residue-by-residue.73-75 This ap-
proach would eliminate the Hypothetical model 1 for
the SH3 domain (Figure 4) as a plausible prediction,
and therefore represents an advance. Even so, the

two experimental structures in Figure 4 agree in
their assignments for only 50% or 70% of the seg-
ments (depending on whether one counts a 310 helix
as an equivalent of an R helix; see below).
In the context of the modern literature, a “predic-

tion” for one structure based on the experimental
secondary structural model from the other would be
“wrong”, again despite the fact that the conforma-
tions of the two proteins are identical within any
plausible level of resolution. To make the point
completely, Hypothetical model 2 (Figure 4) has the
same segment score, but does not represent either
structure accurately.
Both of these examples and the more comprehen-

sive study by Colloc’h et al.68 make the general
statement: One cannot score a secondary structure
prediction objectively if the experimental secondary
structure that serves as a reference is subjective. At
the very least, the subjectivity in assigning secondary
structure to crystallographic data sets an upper limit
on the Q3 score that a prediction can have. The lack
of objectivity associated with defining secondary
structure from experimental coordinates alone makes
it impossible for the residue-by-residue score of a
secondary structure assignment to be routinely higher
than ∼75-85%.75 Higher scores obtained by predic-
tions judged against an experimental assignment
generated by one method imply lower scores when
judged against scoring obtained by another.
One solution to this problem is to distinguish

between “serious” and “not serious” mistakes.73 Dif-
ferent methods, while assigning secondary structure
differently to the same set of coordinates, generally
do not disagree in their assignments in any way that
is significant to the overall perception of the fold.
Thus, a segment that is assigned as a helix by one
method is virtually never assigned as a strand by
another, and a segment that is assigned as a strand
by one method is virtually never assigned as a helix
by another. Rather, the different assignment tools
disagree about the precise beginning and end of
helices and strands, the assignments given to dis-
torted secondary structural elements, and the as-
signments of short elements, often on the surface of
the fold. Each of these differences changes the score;
none change the overall perception of the fold.
This suggests that mistakes (in this discussion, the

word “error” is reserved for experimental error) made
by a prediction fall into two classes, “serious” and “not

Figure 4. Alignment of sequences and experimentally assigned secondary structures71,72 for two Src homology 3 (SH3)
domains. Key: H, R helix; E, â strand; e, weakly assigned â strand; 3, 310 helix. The sequences of the two proteins differ
by a single amino acid (at position 47). The proteins give the visual appearance of having the same overall fold. Yet the
sequences have the same assignment at only 73% of the positions, if “e” is treated as a coil and a 310 helix is assumed to
match equally an R helix or a strand. The segment scores are either 50% or 70%, depending on how a 310 helix is treated.
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serious”, the first being a difference between the
prediction and the experimental assignments of
secondary structure where all methods agree, the
second being a difference between the prediction and
the secondary structural assignment where the meth-
ods disagree. While a prediction must be described
by more than a single score to give an accurate view
of its success, if a single score must be constructed,
the most valuable may well be the number of helices
mistaken for strands and strands mistaken for
helices.

B. Scoring Problem 2: Predictions for a Set of
Homologous Proteins Are “Consensus Models”
The evaluation of predictions is still more prob-

lematical when the prediction applies to a family of
proteins rather than to a single protein. Such a
model is a “consensus prediction”. Experimental
structures are determined for single proteins, not for
families of proteins. When building a model for a
single protein, one clearly can use an experimental
structure of the individual protein as a reference
when evaluating the prediction. But what experi-
mental structure should one use when evaluating a
prediction for a family of proteins?
Consensus modeling assumes, of course, that ho-

mologous proteins have identical conformations.22,23
This is only true as an approximation, of course,
especially for proteins whose sequences have diverged
substantially. For example, some 30% of the side
chains in a pair of proteins with 40% sequence
identity have different orientations.77 By definition,
a consensus model should predict the orientation of
the 70% of the residues whose orientation is con-
served throughout the protein family, and leaves the
remainder unassigned. To evaluate the model gen-
erally requires comparing it with a single experi-
mental structure where all of the side chain orien-
tations are defined, however. Thus, in a family of
proteins that has diverged to 40% sequence identity,
a perfect consensus description of side chain orienta-
tion cannot have a score higher than 70% when
evaluated using a single experimental structure. If

one is interested simply in boosting the score, one
might assign orientations (“inside” and “outside”, for
example) randomly to the residues that are unas-
signed in the consensus model. This would (on
average) boost the score to 85%. But this increase
in the score would have no particularly interesting
scientific meaning.
Secondary structure also diverges during divergent

evolution. A consensus model for secondary structure
is one that identifies the secondary structural ele-
ments that are conserved and leaves unassigned
segments of the protein whose secondary structure
is not conserved. Again, the consensus model is
generally evaluated using a single protein as a
reference, where all of the amino acids are assigned
to some secondary structural state (helix, strand, or
coil). Thus, the regions of the reference protein that
correspond to segments in the consensus model that
are unassigned will all be scored as “wrong”. Again,
one might boost the score by randomly assigning
secondary structure to these nonconserved regions,
again without coherent scientific meaning.73-75,78

The SH3 domain can be used again to illustrate
these points. Figure 5 shows now a set of aligned
sequences of SH3 domains from different “subfami-
lies”. Clearly, the sequence of SH3 domains has
diverged substantially, with the gain and loss of some
secondary structural elements. Thus, the long helix
in the PI3K SH3 domain is not conserved in the
family, and a consensus model of secondary structure
of the family might not be expected to report it. If
that consensus model were evaluated using the PI3K
SH3 domain as a reference structure, however, the
score would be lower to reflect the “omission” of the
nonconserved helix.
These considerations add a layer of complexity to

that introduced in earlier discussions of the limita-
tions of three-state scores.73-75,78 When building a
consensus model of secondary structure to be evalu-
ated using a reference structure subjectively assigned
to experimental coordinates, it is not possible to
resolve the flaws in three-state scores, either residue-
by-residue or segment-by-segment, simply by setting

Figure 5. Alignment of sequences and experimentally assigned secondary structures71,72,76,85-87 for a family of distantly
related Src homology 3 (SH3) domains. Different SH3 domains are specified using standard nomenclature; see references.
Dashes in the sequence are deleted amino acids. Key: H, R helix; E, â strand, 3; 310 helix.
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the goal lower (for example, to 80%). The three-state
score of a perfect consensus prediction can be made
arbitrarily low simply by selecting a reference protein
that has an arbitrarily large number of noncore
segments inserted relative to the core.
The past five years of bona fide prediction projects

has provided many examples where this has distorted
evaluations of predictions. An excellent example is
offered by the bona fide prediction of phospho-â-D-
galactosidase, discussed in greater detail below. The
transparent prediction79 successfully identified every
conserved secondary structural element in the core,
successfully identified the noncore regions, and gen-
erated a correct tertiary structural model for the core,
an 8-fold R-â barrel. Because the consensus model
was scored using a reference protein that had ele-
ments of an additional, nonconserved domain inter-
spersed with the core secondary structural units, the
Q3 score for that prediction was only ∼65%, both by
residue and by segment, a score that might be
considered to indicate that little progress has been
made in structure prediction in the past 20 years.80
In reality, the prediction of the core secondary
structural units was sufficiently accurate to identify
the core fold overall, one of the first times that this
has been done in a bona fide prediction environment.
Analogous cases discussed below include threonine

deaminase and fibrinogen. In each case, Q3 scores
(for example, of 68%) could not be used even as
cutoffs to separate models worthy of further exami-
nation from those not worthy of further examination
without creating artifacts in the evaluation. The
reference proteins simply contained too much polypep-
tide chain that was not part of a core fold.

C. Progress in Evaluating Secondary Structure
Predictions
The inadequacy of three-state scores is now widely

appreciated, and many groups have produced impor-
tant new ideas on how to evaluate predictions.73-75,78

These are increasingly being applied.81,82 Neverthe-
less, many papers in the recent literature continue
to use small (one to three percentage points is typical)
increases in Q3 scores as evidence for an improve-
ment in a prediction heuristic in the 70-75%
range.83,84
Without making the effort to reexamine the origi-

nal data from which these scores are constructed, it
is impossible to know whether these increased scores
reflect meaningful improvements in the prediction
tool. If the improvement in three-state score repre-
sents a decrease in the number of strands mis-
assigned as helices, or helices misassigned as strands
(“serious mistakes”), then the improved score indi-
cates a more useful heuristic. It is also possible,
however, that the score has increased without any
useful improvement in the predictions themselves.
Future investments in the detailed analysis of protein
structure must adopt more sophisticated methods for
scoring, so that these investments can pay the
highest dividend in information.
Steps have also been taken to improve the tools

used to automatically assign secondary structure to
experimental coordinates. For example, Frishman
and Argos recently reported a tool named “STRIDE”

for assigning secondary structure to experimental
coordinates.88 STRIDE uses both hydrogen bonding
and main chain dihedral angles as input, parameter-
izes this information against secondary structures
assigned by crystallographers, and optimizes the
relative contributions of the two with the specific goal
of producing assignments that are in closer agree-
ment with the assignments that crystallographers
make. The propensities of amino acid residues with
specific ψ and φ angles to be part of helices and
strands are also considered, so the method depends
on the nature of the amino acids involved. While no
independent evaluation of the method is presently
available, anecdotal experience in these laboratories
suggests that the tool improves assignments in
regions where they are critical for structure predic-
tion (see below).
Another approach to circumventing the problems

associated with scoring is to score only those regions
of the core fold that are conserved in the protein
family.78 The disadvantage of this approach is that
it normally requires at least two experimental struc-
tures within a protein family, preferably themselves
quite distant in the evolutionary tree, to identify the
elements of the consensus fold. These are not always
available, especially for bona fide predictions. In the
case of the SH3 domain, however, where multiple
experimental structures of domains distant in the
evolutionary tree are available, this approach is
clearly viable (Figure 5). The â strands that define
the character of the core of the SH3 domain are
conserved. Strands 2 and 3 in the src SH3 domain
are assigned in some domains but not in others; thus
the ambiguity arises from the subjectivity of strand
assignment. This too is evident by looking at several
homologous structures. The approach clearly identi-
fies Hypothetical prediction 2 as bad. Further, it
defines more precisely an ideal consensus prediction,
shown as the last line in Figure 5. Indeed, Figure 5
shows that three or four experimental structures
from members of a protein family widely dispersed
in an evolutionary tree are sufficient to generate a
solid picture of the secondary structural elements of
a protein that are important to predict.
In the absence of multiple experimental structures

for a protein family, a scoring system must identify
noncore regions by inspecting a single experimental
structure in light of the multiple alignment itself.
Core elements might be defined geometrically; a core
element is one where a substantial fraction is buried.
Thus, a core strand is one that forms strand-strand
interactions, is central to a â sheet, and forms
backbone hydrogen-bonding interactions with two
other strands on both of its edges. By this definition,
a core strand is distinct from an edge strand, which
forms backbone hydrogen bonds to only one other
strand on only one of its edges. In a number of
evaluations discussed below, edge and core strands
are distinguished.
A more general definition of a core secondary

structural unit focuses on the evolutionary stability
of the secondary structural unit. Non-core regions
generally suffer multiple insertions and deletions
after ∼100 point mutations per 100 amino acids.89
This procedure can be used to rule out some segment
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of a target peptide sequence as contributing to the
core. If a segment is deleted in some homologs (and
if the deletion is not a database error), then it is not
a core. The procedure was used, for example, to
identify noncore regions in the phospho-â-galactosi-
dase structure.
Another method for identifying a core segment of

a protein sequence is applicable to any set of se-
quences containing three sequences or more. In the
tool, a pairwise alignment is constructed for each pair
of sequences in the set using a dynamic programming
tool. Consider for example a set of sequences with
three proteins, A, B, and C. A core segment of the
multiple alignment is defined as those regions where
the alignment of A with B and the alignment of B
with C is consistent with the alignment of A with C.
This approach is generally useful only in the absence
of an experimental structure and needs further
experimental support. Thus, it is not yet empirically
established that segments that are noncore by this
rule are also more likely to suffer insertions and
deletions after protracted divergent evolution, or
whether they lie predominantly on the surface of a
protein. It is clear (see below), that predictions in
such segments are difficult to make reliably.
A final method for identifying core elements relates

to the reconstructed ancestral sequences for a protein
family. In general, the part of the ancestral sequence
that is reconstructed with high probability is the
“core” of the protein.
Regardless of the definition of the core, the distinc-

tion between serious and nonserious mistakes is
helpful in determining how well a prediction has done
in identifying core secondary structural elements in
the absence of more than one structure within the
protein family. During divergent evolution, strands
are rarely converted to helices and vice versa. Rather,
short helices and strands, usually not in the core of
the folded structure, are distorted or replaced by coils
or gaps during divergent evolution, and small num-
bers of residues are added to or removed from helices
and strands at the core. Again, none of these changes
change the overall fold. Therefore, a score that
focuses closely on mispredictions that confuse strands
and helices has proven to be a useful, if incomplete,
tool for evaluating consensus predictions.78,90
This discussion is especially timely as the best bona

fide structure predictions (see below) are achieving
Q3 scores in the 70-75% range. As this is also the
level of ambiguity in secondary structural assign-
ments and in the divergence of secondary structure
commonly found in a prediction dataset, an improved
scoring system is needed, and this almost certainly
requires a focus on core secondary structural ele-
ments.

D. Scoring Predictions in This Chemical Review
Recognizing that a scoring problem exists with

conventional tools for scoring predictions is the first
step toward resolving the problem. Fortunately, the
problem is easily understood by those trained in
chemistry. Tradition in chemistry has long recog-
nized that molecular structures have complexity, that
this complexity is interesting, and that this complex-
ity is not easily abstracted by a single number. When

examining a prediction, a chemist is interested in the
details of the experimental structure.
With secondary structure, these details are rela-

tively accessible, within the limits noted above. In
this review, complete secondary structure predictions
are presented, together with one or more experimen-
tal assignments of secondary structure. These are
accompanied by the sequences of proteins in the
family containing the “target” protein, the protein
whose conformation is sought. From this detailed
presentation, the reader can gain his/her own percep-
tion of the prediction by inspection. Commentary is
then provided to point out why specific mistakes were
made.

E. Scoring Predictions of Secondary Structures
in the Future
Few experimental biochemists find a secondary

structure prediction useful in itself. Rather, a sec-
ondary structure prediction is a starting point for
further work. Most important from a structural
perspective, a secondary structure model is the
starting point for building a model of tertiary struc-
ture. This requires assembling the predicted second-
ary structural elements in three-dimensional space.
Alternative uses include detecting long-distance
homologs,91-93 antigenic sites,94,95 active sites,15,21,91
defining quaternary structure,15 or proposing mecha-
nistic hypotheses for how the protein might catalyze
a reaction.96 The ultimate value of tools for predict-
ing secondary structure will be defined by their value
in these and other applications.
When assembling a tertiary structural model from

a set of predicted secondary structural elements,
mistakes that misassign a core helix as a strand or
a core strand as a helix will both generally be fatal
to an effort to build a tertiary structural model.
Misassignment of an element that is not in the core,
or that has undergone divergence during divergent
evolution, generally will not be. Omission of a
secondary structural element is generally fatal when
that element is at the core of the folded structure.
Omission of a peripheral secondary structural ele-
ment is generally not. Thus, evaluations that focus
on serious mistakes, and that weight mistakes more
seriously when they are in the core of the fold, are
likely to be more relevant to understanding the value
of secondary predictions than those that do not.
To date relatively few predicted models for second-

ary structure that have been placed in the public
domain have been applied. This makes it difficult
to do a comprehensive evaluation of prediction meth-
odology using these tests. They are, however, enough
to support the comments below, where tertiary
structural models built on predicted secondary struc-
tural units in a bona fide prediction setting are
discussed.

III. Background: Classical Structure Prediction
Discussions of conformation in proteins began

immediately after the first proteins were sequenced.
A daring attempt by Scheraga to predict the confor-
mation of ribonuclease as early as 1960, based on a
variety of experimental and theoretical consider-
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ations, is especially noteworthy, if only because it
illustrates how difficult the problem is.97 Not until
the early 1970s, however, did the search for methods
to predict conformation begin in earnest. Work of
Anfinsen and others showed that denatured proteins
could refold spontaneously,98 at least in certain cases,
providing experimental support for the paradigm that
the protein sequence alone determines the conforma-
tion of a protein. This paradigm remains dominant
today, despite the discovery of chaperonins,99 evi-
dence that some proteins form metastable struc-
tures,100 and renewed interest in protein folding
pathways,101 all of which suggest that protein folding
has a kinetic as well as a thermodynamic component.
A discussion of classical methods is necessary to

prepare the reader for a discussion of modern meth-
ods. As this Review is intended in part for chemists,
biochemists, and students not directly involved in
structure prediction research, we provide a summary
of these methods. Consistent with the nature of this
audience, the summary focuses on the underlying
philosophy and strategy of classical approaches,
rather than providing a comprehensive review of
their technical details. Greater technical exposition
is found in many excellent reviews, both those
mentioned above and those cited below. Especially
helpful is a compendium of reviews edited by Fas-
man,63 published in 1989. It remains a timely
volume, and the reader is referred to it for a more
comprehensive coverage of the classical aspects of the
problem. This book also contains a list of earlier
reviews on proteins structure prediction.63
Most of the heuristics developed during the first

three decades of the field attempt to predict protein
conformation from a single protein sequence, without
embedding that sequence within a family of homolo-
gous protein sequences. Approaches of this type for
predicting the conformation of a protein sequence are
generally classified as either “probabilistic” or “phys-
icochemical”.53 We will comment on these separately
below.

A. Probabilistic Methods for Predicting
Secondary Structures
Probabilistic methods tabulate from known crystal

structures the propensity of each of the amino acids
to form secondary structures of each type. Early
work with myoglobin and hemoglobin found, for
example, that proline lies more frequently in a coil
or a turn than the average amino acid.102 More
comprehensive analyses showed that different amino
acids have different propensities for different types
of secondary structure. Propensities for individual
amino acids to lie in particular secondary structural
types can be expressed numerically.103 These pro-
pensities are generally small. Thus, the best “helix-
forming” amino acids (Ala and Glu) are only ∼50%
more likely to lie in a helix than the average amino
acid. The worst “helix-forming” amino acids are only
∼50% less likely.
Propensities for individual amino acids to adopt

particular secondary structures have been used for
predicting secondary structure for 25 years. In their
simplest form, probabilistic prediction tools assign
secondary structure (helices, strands, or neither) to

segments of polypeptide chains that are rich in amino
acids with propensities for the particular structural
type. Often, a model for how proteins fold underlies
the assignment tool. The Chou-Fasman method, for
example, looks for a nucleation site for a helix, a
segment of four amino acids with high propensities
to form a helix.104 The GOR method of Garnier,
Osguthorpe, and Robson treats a string of amino
acids as a message that is translated by the folding
mechanism into another message, a string of confor-
mational states, and applies information theory
methods to deduce the “code” for converting one
message into the other.64,105

Probabilistic methods are well known in the lit-
erature.106 The Chou-Fasman method and the GOR
method are probably the most frequently cited and
used. The methods are easily automated and are
frequently implemented (sometimes incorrectly)107 in
standard computer software packages for protein
sequence analysis. This makes secondary structure
prediction tools readily available to the nonspecialist.
Indeed, in the 1980s, a Chou-Fasman or GOR
prediction of secondary structure was routinely re-
ported for new protein sequences.
It is quite difficult to evaluate these, however, as

both valid and invalid implementations of various
standard methods have been used to make these
predictions,107 and it is difficult to determine which
were used to assign secondary structure to any
particular sequence. Nevertheless, probabilistic meth-
ods have been the subject of many excellent reviews,63
and their strengths and weaknesses are well known.
The most prominent weakness is their underlying
strategy of assuming that local conformation (second-
ary structure) is predominantly determined by local
sequence. The tools assign secondary structure to a
polypeptide segment by examining a sliding window
(generally 1-10 consecutive amino acid residues) and
ignoring the influence of the rest of the protein on
secondary structure.
Unfortunately, much information shows that long-

distance interactions in a protein dominate local
sequence in determining local conformation.108 For
example, Kabsch and Sander,109 Argos,110 and Presnell
and Cohen111 identified specific pentapeptides and
hexapeptides that form a helix in one protein context
and a strand in another. This shows convincingly
for these sequences that secondary structure is not
determined by local sequence and raises the possibil-
ity that no probabilistic method fashioned in the
classical sense could possibly assign both structures
correctly. None of this surprises the chemist, of
course; local conformation is frequently influenced by
long-distance interactions in many classes of natural
products.
This work does not, however, prove that no se-

quences exist that have secondary structures inde-
pendent of tertiary interactions. Nor does it exclude
the possibility that small propensities exist. Indeed,
many of the “parsing” tools (see below) used by
contemporary prediction methods identify specific
sequences that, with high probability, form coils.91
Further, short (5-15 residue) polypeptide sequences
that adopt specific secondary structures in the ab-
sence of tertiary interactions can be found.112,113
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Other difficulties encountered by statistical meth-
ods arise from biases in the crystallographic database
used to parameterize them. Anecdotally, it has been
suggested that probabilistic methods generally per-
form better on proteins that adopt a class of fold that
is well represented in the database upon which the
method is parameterized, and poorly on classes of fold
that are poorly represented in the same database.
Nine folds represent over 30% of the structures
contained in the 1994 database (R-â doubly wound,
the eight-fold barrel analogous to that found in triose
phosphate isomerase, split R-â sandwich, Greek key
immunoglobulin, R up-down, globin, jelly roll, trefoil,
and R-â roll).114 In particular, R-â proteins with
the â sheet buried seem to be predicted better than
all â proteins using classical methods.65,115,116 Buried
â sheets are heavily represented in the database.
Inspection of the statistical parameters themselves

shows evidence of this bias. For example, the GOR
parameter for a coil structure correlates both with
the hydrophobicity index117 and with observed side
chain accessibility of the individual amino acids
(Figure 6). This correlation presumably reflects the
fact that both coils and hydrophilic amino acids are
found preferentially on the surface of proteins within
the set of proteins used to parameterize the GOR
method.118 Similarly, the strongest predictor of the
GOR strand propensity is hydrophobicity and interior
position. This is expected given the fact that strands
lie preferentially inside the globular structures found
in the databases used to parameterize the GOR
method. Only the helix parameter lacks a correlation
with hydrophobicity. This might be interpreted as
reflecting the fact that in the crystallographic data-
base, a majority of the helices lie on the surface of
globular folds, with part of their residue side chains
pointing out to solvent and part pointing in toward
a hydrophobic core. These correlations suggests at
least the possibility that the observed propensities
reflect in part tertiary structural influences on sec-
ondary structure rather than intrinsic propensities
of specific side chains to force the backbone to adopt
specific φ and ψ angles. This does not mean that all
propensities can be explained in this way, of
course.112,113,119

For example, Pro lies (as expected) off of the
correlation in Figure 6 for coil parameters; this
almost certainly reflects an intrinsic propensity of Pro
to be disfavored in helices and strands. Further, the
correlation between hydrophilicity and the propensity
to form coils may reflect the fact that hydrophilic side
chains have functionality able to form hydrogen
bonds, which in turn can form hydrogen bonds to the
backbone atoms, thereby disrupting helices and
strands, which are stabilized by backbone-backbone
interactions.
Whatever the true interpretation of the statistical

propensities, this discussion illustrates the complexi-
ties of the problem, and the potential for systematic
errors in predictions made using probabilistic meth-
ods. These will become important below when we
discuss methods that extend statistical methods
using evolutionary analyses.

B. Physicochemical Methods
Physicochemical methods rely on physical and

chemical principles to rationalize and predict protein
conformation. For example, hydrophobic side chains
are more likely to be buried in a protein that folds in
water than are hydrophilic side chains,53 and this fact
can be used to predict secondary structure. Lim
noted many years ago that a helix might be identified
in a polypeptide sequence from a characteristic 3.6-
residue periodicity in the placement of hydrophilic
and hydrophobic residues.120 Such periodicity is
easily visualized by use of a Schiffer-Edmundson
helical wheel (Figure 3). The hydrophobic face of the
amphiphilic helix is often found to be buried within
the fold.
The notion of amphiphilicity has been generalized

to include hydrophobic moments of secondary struc-
tural elements.121 The hydrophobic moment is an
analog of the electric dipole moment, except that it
measures the asymmetry of the hydrophobicity in a
structure rather than the asymmetry of the electrical
charge. Thus, a helix with hydrophobic residues on
one side and hydrophilic resides on the other has a
large “hydrophobic moment” and is expected to be
stable at (for example) an interface between oil and
water.
Physicochemical methods for predicting secondary

structure have also been the subject of excellent
reviews.63 These tools have shown promise when
applied to single sequences in some cases but not in
others. These are discussed in greater detail below.
Further, physicochemical analyses have proven to be
important in many evolution-based prediction tools,
as they appear to be more readily “averagable” than
statistical methods (see below).
In individual cases, failures of physicochemical

methods to make correct secondary structure predic-
tions can often be related to violations of “folding
rules” by proteins (see above). When such violations
are observed, they often offer the biochemist an
opportunity to engineer the protein to improve its
stability. For example, if a natural protein places a
hydrophobic residue on its surface, a glycine in a
helix, or an acyclic amino acid at a position in a
protein where a proline would fit the backbone
configuration,122,123 a more stable protein can often
be obtained by replacing the hydrophobic residue by
a hydrophilic residue, the glycine by an alanine, or
the flexible residue by a proline. In each case, the
mutation makes the sequence obey the folding “rules”
better. Examples where improved stability is engi-
neered into a protein via a single amino acid substi-
tution offer additional evidence that natural selection
does not seek proteins with maximized stability.15
Were increased stability a goal of natural selection
and achievable by simple point mutation, evolution-
ary processes would have already introduced the
changes made by the protein engineer.
Physicochemical methods of increased sophistica-

tion use energy minimization, molecular dynamics,
or even quantum mechanical tools. These tools have
been reviewed in detail elsewhere.124-126 Here, the
limitations of the methods relate directly to the
complexity of the computations involved, the difficul-
ties associated with finding optima on an energy
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surface, and the difficulties in obtaining accurate
models for water, side chain-solvent interactions,
and side chain-side chain interactions. Together,
these have often defeated direct computation of
protein conformation, although some interesting
cases where quite good conformational models have
been built.127 Further, the increase in computational
power is encouraging many groups to make a direct
assault on the de novo computation of protein con-
formation.128,129 Some of these have now been shown
to fail in specific cases in a bona fide prediction
setting.130

C. Joint Methods
Many have hoped that a prediction can be im-

proved by merging different classical prediction
methods to obtain “joint” predictions.131 For example,
the COMBINE method joins the GOR III method
with the SIMPA132 tool and a heuristic known as Bit
Pattern, which is a physicochemical tool that searches
for hydrophobicity.133 Joint methods are reviewed
elsewhere in detail;63 specific examples of bona fide
predictions made using them with homologous se-
quences are discussed below. To give the reader a
general view of how joint methods perform when
applied to a single sequence, however, Figure 7
presents a collection of bona fide predictions made
using a joint method of Nishikawa and Ooi.134 These
authors combined Chou-Fasman and GOR predic-
tions for 10 individual proteins for which no structure
was known at the time. Table 1 collects scores of
various types for several of these.
This collection of predictions is representative of

those made by many others using classical statistical
methods, individually or jointly, on single sequences.
It is clear from Figure 7 that the results are not
useful for tertiary structure modeling. Too many
strands are mistaken for helices; too many helices
are mistaken for strands. It is this type of data that
the editors of the journal Trends in Biochemical
Sciences were undoubtedly thinking of when they
summarized the status of the structure prediction

field in 1992 as part of a celebration of the 200th
issue of their magazine. They wrote: “The ability
to predict folding patterns from amino acid sequences
is still, we understand, more a matter for soothsayers
than scientists, despite lavish support from optimistic
protein and drug designers.” 52

IV. Introducing Evolution into Classical Prediction
Methods

Proteins diverging from a common ancestor retain
a core structural fold, as long as the proteins have
served a selected function during the period of
divergent evolution. This generalization was first
adumbrated in the 1970s, when Rossman and his co-
workers noted that dehydrogenases acting on differ-
ent substrates have similar folds.22 In the mid 1980s,
Chothia and Lesk published a quantitative relation-
ship between the extent of identity in two protein
sequences and the extent of divergence in their
respective conformations.23

By almost any perspective, the conservation of fold
is remarkable. Sequences that have changed over
70% of their amino acids still have backbone chains
that are superimposable with a root mean squared
deviation of ∼2 Å. This is not greatly different from
the 0.7 Å rms deviation for the identical protein
crystallized in two different crystal forms,23 and not
greatly higher than the nominal resolution of many
crystal structures in the database. Further, only a
modest extrapolation suggests that the core fold will
remain after 80-90% of the amino acids have been
substituted. At this level of substitution, it is impos-
sible to tell by simple sequence analysis that the two
proteins are related by common ancestry. This
implies that similar fold is the strongest indicator of
common ancestry, stronger than sequence, mecha-
nism, stereospecificity, or any other “wet” biochemical
trait.35,135

It should be emphasized that conservation of
tertiary fold is not an intrinsic property of a protein,
but rather an evolutionary property of a protein

Table 1. Summary of the Results of Six Classical Joint Bona Fide Predictions134,a

protein
R
%

â
%

coil
%

H-H
%

E-E
%

C-C
%

H-C
%

C-H
%

E-C
%

C-E
%

H-E
%

E-H
%

correct
%

serious
mistakes %

ribonucleotide 70.9 3.5 25.6 40.0 1.2 19.4 18.8 3.5 2.4 2.6 12.1 1.2 60.6 13.3
reductase 57.1 34.3 75.8 55.7

nitrogenase (Fe) 41.1 13.2 45.6 31.7 9.4 19.2 6.6 16.7 1.7 9.8 3.1 2.1 59.9 5.2
77.1 71.2 42.1 63.5

renin 17.4 47.0 35.6 4.6 24.9 21.7 8.5 5.3 18.9 8.5 4.3 3.2 51.2 7.5
26.4 53.0 61.0 46.8

avidin 2.5 51.2 46.3 0.0 20.7 36.4 2.5 0.8 22.3 9.1 0.0 8.3 57.0 8.3
0.0 40.4 78.6 39.7

enolase 42.9 17.4 39.7 30.5 5.7 25.0 7.8 12.6 5.0 2.1 4.6 6.6 61.2 11.2
71.1 32.8 63.0 55.6

soyabean proteinase 0.0 29.6 70.4 0.0 9.9 56.3 0.0 8.4 19.7 5.6 0.0 0.0 66.2 0.0
inhibitor -.- 33.4 80.0 56.7

average 59.3 7.6
a The R, â, and coil columns contain the percentage of residues assigned to each of these secondary structural units. The H-H,

E-E, and C-C columns contain the percentage of residues in the alignment that are correctly assigned as helices, strands, and
coils (respectively); underneath is the percentage of the helix, strand, and coil positions (respectively) correctly identified. The
H-C, C-H, E-C, C-E, H-E, and E-H columns contain the percentage of residues in the alignment that are incorrectly assigned,
with the first index indicating the experimental assignment, the second indicating the prediction. The percent correct is calculated
from (H-H + E-E + C-C)/(total number of positions in the protein), and represents a classical three state residue-by-residue
score. A serious mistake is defined as one where a residue in a helix in the experimental structure is predicted to be in a strand,
or vice versa. Figure 7 should be inspected to obtain a more comprehensive view of the quality of the predictions.
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evolving under functional constraints. Changing
randomly 70% of the amino acids in a polypeptide
chain will, with extraordinarily high probability,
greatly change the conformation of the protein. The
fact that it has not done so in natural proteins arises
from the fact that before they enter our databases,
proteins that have undergone random variation have
been filtered by natural selection to remove polypep-
tides that do not retain the same overall tertiary fold,
at least to the extent that they can help their host
organism survive, select a mate, and reproduce.35

A. Homology Modeling

For structure prediction, the conservation of con-
formation after substantial sequence divergence has
an important corollary: if one knows the conforma-
tion of one member of a protein family, one knows
(more or less) the conformation of all other members
of the family. This corollary has generated the field
of “homology modeling”. In this field, the conforma-
tion of a target sequence is modeled by extrapolation
of an experimental conformation of a homolog with
known structure. It has also created the impetus to
develop methods for detecting very distant homologs
of proteins, as these are the starting points for
homology modeling.
Homology modeling is one type of approach that

uses evolutionary analyses to predict protein confor-
mation. The second type, often referred to as ab
initio structure prediction, seeks structure of a family
of proteins where no member of the family has a
known experimental conformation.
Ab initio prediction is the primary focus of this

review. Homology modeling does, however, introduce
concepts that are valuable for all evolution-based
structure prediction tools. Further, as discussed
below, the goal of an ab initio structure prediction
exercise is often a consensus model for a protein
family that needs optimization for a specific protein
sequence that is a member of this family. This might,
at least in principle, be done using procedures that
have been developed for homology modeling. There-
fore, we summarize briefly the approach of homology
modeling and provide leading references for the
reader who wishes to delve deeper.

1. Homology Modeling with a Clearly Identifiable Homolog

Homology modeling is the process of creating a
model of the conformation of a target protein by
comparing it to a homolog with known conforma-
tion.136,137 It is difficult to identify the origins of
homology modeling. In 1969, Brown et al. built a
three-dimensional model of bovine R-lactalbumin
starting from the known structure of hen’s egg white
lysozyme, which was believed to be a homolog.138
Argos and Rossman were concerned in the mid-1970s
with comparing structures of homologous proteins,
following the discovery that dehydrogenases acting
on different substrates had similar folds.139 An
excellent example of homology modeling was pro-
vided by Greer for serine proteases.140 Homology
modeling has become still more widespread with the
increase in computational power and the refinement
of molecular dynamic tools. The approach has re-

cently been covered in a number of excellent re-
views.42,137,141,142
Homology modeling requires four steps:
(i) First, a protein must be found in the crystal-

lographic database that can be shown to be a homolog
of the target protein. Generally, this is done by a
computer, which attempts to align the sequence of
the target protein with the sequences of every protein
in the crystallographic database. The criteria for a
match are discussed in greater detail below. Gener-
ally, however, if a protein in the crystallographic
database can be found that matches the sequence of
the target protein with 30% identity (or more) over
a segment length of 100 amino acids (or more), a
homolog with known structure has been found and
homology modeling can begin.
(ii) Next, an alignment must be constructed to pair

specific amino acids in the sequence of the target to
specific amino acids in the sequence of the reference
protein. This process is obviously easier if the
reference and target proteins are more similar in
sequence than if they are not. After substantial
amounts of sequence divergence (see below), the
alignment requires placement of gaps. This is dif-
ficult, and undermines many examples of homology
modeling exercises,143 as discussed below.
(iii) Next, amino acids in the reference protein must

be replaced in the crystal structure of the reference
protein by the amino acids found at the corresponding
position in the target protein. The orientation of the
side chains can come from a variety of sources,
including the original structure,77,144 from matching
protein segments,10 from a library of rotamer confor-
mations,145 or from similar local residue environ-
ments found in the protein database.146 The details
of the approach are reviewed elsewhere.42
(iv) Last, the conformation of the resulting model,

having the coordinates of the reference protein but
the sequence of the target protein, must be optimized.
This is generally done by molecular mechanics pro-
cesses, which in turn rely on force fields. The goals,
aside from minimizing the potential energy of the
model, include removing unfavorable contacts, filling
in holes in the structure, or modeling loops that
appear in the target sequence without a correspond-
ing element in the reference structure.
A variety of computer packages are now available

to do homology modeling. These include Composer
(from Tripos), Look (from Molecular Applications
Group), Modeller (from Molecular Simulations Inc.),
and Insight-Homology.

2. Does Homology Modeling “Work”?

Evaluation of a homology model presents different
problems than evaluation of a secondary structure
prediction. First, homologs share essentially all of
the core secondary structural elements. Therefore,
if one has truly identified a homolog with a known
crystal structure, and if the sequence identity is
greater than 30%, it is difficult not to correctly place
the core secondary structural elements. When scor-
ing a homology model, the structural features at issue
are those in which the target and reference structure
differ. This is conveniently measured by a root mean
squared (rms) deviation of atoms in the target
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sequence and atoms in the model for the target
structure as built by analogy to the reference struc-
ture.
Not surprisingly, homology modeling of secondary

structure is successful by most of the standards used
to judge prediction methods; it could hardly be
otherwise. Further, it is most successful when the
target protein and the reference protein are relatively
similar in sequence. The less the sequence of the
target protein has diverged from that of the reference
homolog, the more similar the conformation of the
target sequence will be to the known structure. For
example, Harrison et al. examined six comparative
modeling targets predicted in a procedure that relied
on energy minimization alone to position all new
atoms.147 Root mean squared deviations between the
calculated and experimental structure on C R atoms
in the polypeptide backbone ranged from 0.69 to 1.73
Å in protein pairs whose sequence identities de-
creased from 60 to 20%. Similar results have been
seen in other examples.
In bona fide predictions, homology modeling has

done less well in modeling those regions (generally
external loops) where homologs have different con-
formations. In the CASP1 project in 1994,148 for
example, six models were built for the eosinophil-
derived neurotoxin, a homolog of ribonuclease A with
approximately 35% sequence identity. A range of
modeling methods and force fields were used; each
started with a high resolution crystal structure of
ribonuclease A. Using root mean squared deviations
as a guide, all six of the models computed by energy
optimization were more different from the target
structure than the starting structure. In other
words, a better model of eosinophil-derived neuro-
toxin would have been obtained by using the coordi-
nates of ribonuclease A directly without any energy
optimization than the coordinates produced by any
of the refinement packages tested. This disappoint-
ing result undoubtedly reflects the immature status
of force fields, and difficulties inherent in detailed
modeling of interactions between solutes and water.

3. Homology Modeling with Distant Homologs: Profile
Methods and Threading

Homology modeling faces an obvious limitation: it
works only if a homolog can be found in the crystal-
lographic database. With only a few hundred folds
in the database, this is by no means certain with any
particular target sequence. What happens if a ho-
molog is not readily discernible in the database?
The first approach is to relax the criteria used to

identify the homolog. While proteins sharing 30%
sequence identity are certainly homologs, proteins
with a 25% identity are likely to be homologs as well.
Below this level, one enters the “twilight zone” of
protein structure sequence comparison,149 a region
where nebulous similarities between sequences can
be seen, each suggestive of distant homology, but
none adequate to make a statistically significant case
for it. Considerable effort has been devoted to
developing tools to identify long-distance homologs
in a database, in particular, by expanding the tools
needed to compare protein sequences directly.92,150,151
Many of these have been reviewed recently.152

A more comprehensive class of tools that combines
sequence and structural information has been devel-
oped to detect long-distance homologs. These come
under the titles of “profile methods”, “threading”, or
occasionally as approaches to “the inverse folding
problem”.153,154 The inverse folding concept aims to
reformulate the prediction challenge to change the
question from “What conformation does this sequence
adopt?” to the question “What sequences adopt this
conformation?” The philosophies and strategies un-
derlying these approaches are discussed below.
Early work by Eisenberg and his co-workers de-

veloped “profile” methods for detecting distant ho-
mologs in a database of known structures. In its first
version, protein sequences related to a protein with
known conformation were aligned, and the prob-
abilities of each of the 20 amino acids appearing at
each position in the alignment were deduced from
the sequences. The result is a “profile” of the protein
family, a position-by-position statement of what
residues might be accepted by functional constraints
on the divergent evolution of the family. The se-
quence of a target protein can then be examined to
see whether it fits the profile.155,156 If it does, then
the protein with known conformation is a possible
homolog of the target protein. The alignment gener-
ated by the profile analysis is then used as the
starting point for homology modeling as described
above.
The profile method was extended by Bowie et al.

to include information directly related to the confor-
mation of the reference protein, available from the
crystallographic database.28 Here, the environment
of each amino acid in the reference crystal structure
is assigned to one of a number of classes, for example,
the local secondary structure, the extent to which the
side chain is buried, or the nature of other atoms in
contact with the side chain. This provides more
information, this time from the known conformation
of the reference protein, that can be used to better
assess the probability that the target protein might
have the same fold. Blundell and his group have
developed in parallel a set of structure-based substi-
tution matrices that has the same effect.157 In each
case, the goal is to glean as much information about
the proteins in the crystallographic database that
might be extrapolatable to very distant homologs, the
target protein in particular.
A third approach reconstructs a maximum likeli-

hood representation of the most recent common
ancestor of all proteins in a family.92 This ancestor
stands at the head of an evolutionary tree and
represents the most ancient protein in the family.
The ancestral protein is the closest in geological time
to the divergence point of any long-distance homolog,
and therefore resembles it most closely. Thus, if the
target sequence is to align with any sequence clearly
homologous to a protein with a known conformation,
then it will be to this ancestral sequence.
In a prediction setting, threading is to date the

most popular way to use such methods to identify
distant homologs.158,159 A threading heuristic at-
tempts to fit, or “thread” a sequence of a target
protein onto the coordinates of another protein of
known structure. Threading may use profiles or may
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attempt to combine molecular mechanics with a
reference conformation to learn how easily the se-
quence of the target protein can be “fit” on top of the
reference crystal structure. In this case, force fields
are important to evaluate the fit of the threaded
sequence from the target protein on the reference
protein structure. Especially influential have been
pairwise potentials derived by examining crystal
structures directly.160,161 Last, although a technical
detail to those not working in the field, threading and
homology modeling can be treated within the math-
ematical framework known as “hidden Markov mod-
els”, a field that concerns strategies for rigorously
defining and optimizing models on the basis of a large
number of probability tables.162

Threading asks whether the target sequencemight
adopt the same fold as the sequence with a crystal
structure. It is, in this way, an “inverse folding”
approach to structure prediction. It relies again on
the database having a protein that is homologous or,
in its broadest interpretation, simply analogous in
structure, to the target protein. In the first case,
threading is simply long-distance homology modeling,
with selective pressure conserving the functional
aspects of the fold during long periods of divergent
evolution. In the second, threading implies the
convergence of tertiary fold, which reflects underlying
propensities of amino acids in the two proteins to
form the same conformation.

4. Does Threading Work?

Unlike with homology modeling with clearly iden-
tifiable homologs, threading can be judged in two
ways. We first may ask whether the reference
protein in the crystallographic database identified by
the threading procedure is indeed a homolog. Obvi-
ously, if the overall fold of the reference protein from
the database proves to be radically different from that
of the target protein, the threading exercise has
failed.
If the reference protein from the database proves

to have the same overall fold, the threading tool has
successfully passed its first test. Next, the threading
must produce a correct alignment between the target
and reference sequences. Secondary structural ele-
ments in the target structure must be matched with
the homologous elements in the reference structure.
This matching is critical for the next step: replacing
amino acids in the reference structure by amino acids
from the target structure. If the alignment is incor-
rect, the homology model will be incorrect. A thread-
ing result can therefore be judged by how well the
alignment has succeeded.
A large number of reviews have appeared recently

assessing the outcome of threading exercises, both
tested retrodictively and in bona fide prediction
settings.29,58,163-165 Perhaps the earliest significant
concentration of bona fide predictions came through
the threading test performed in the context of the
“Critical Assessment of Structure Prediction” (CASP1)
project consummated in Asilomar in December
1994.166,167 Here, the results were intriguing.168,169
Nine different teams of predictors submitted 86
threading predictions covering 21 target proteins,
chosen to have little or no sequence similarity to

proteins of known structure. Of these, 44 predictions
were submitted for 11 target proteins that were later
found to adopt known folds. The predictions for the
remaining 10 proteins were not analyzed, as the fold
adopted by these proteins displayed no strong simi-
larity to any fold known in the database (making it
impossible for even the best threading tool to suc-
ceed).
In many cases, threading identified a protein in the

database having a similar fold. Indeed, every team
predicted correctly some target structures, and virtu-
ally all targets were assigned a correct fold by at least
one team. One team identified the correct homolog
in five of the nine test cases. Common folds such as
the eight-fold R-â barrel were recognized more
readily than folds with only a few examples known
in the database.
Surprisingly, however, the quality of the align-

ments generated by the threading tools turned out
to be quite poor in many cases. This was true even
in the cases where the threading method had cor-
rectly identified the fold in the crystallographic
database that resembles the fold in the target pro-
tein. In other words, the threading had identified
in the database a protein having the same fold as
the target protein, but not for the correct reasons.
Further, the alignment generated by the threading
tool could not be used to superimpose the target
protein sequence on the reference protein structure.
Lemer et al. concluded from this result that “thread-
ing can presently not be relied upon to derive a
detailed three dimensional model from the amino
acid sequence”,168 and offered some suggestions for
why incorrect alignments might identify correct
homologs.
Others have provided additional evaluations of the

results.29,44 agreeing about both the “good news” (it
is likely that a correct homolog will be identified by
at least one threading tool) and the “bad news” (no
single tool is able to identify a correct homolog with
a correct alignment in most of the challenges). This
combination of good and bad news might, of course,
indicate that each of the threading tools is making a
small contribution toward a larger solution to the
problem. Unfortunately, it is also consistent with the
conclusion that the tools are randomly identifying
homologs in the database. As the database is finite,
and as the evaluation considers only those prediction
targets that have a homolog in the database, the
results obtained when a large number of prediction
tools produce random assignments will also be dis-
tributed so that at least one tool will get the correct
answer for every individual case, but no tool will get
the correct answer in many cases. Distinguishing the
two interpretations of the CASP1 threading project
depends on the precise number of tools, targets, and
reference structures and is complicated by difficulties
in finding a controlled set of proteins to test threading
methods.
This being said, threading methods remain intrigu-

ing, and several threading predictions are included
in the figures associated with bona fide predictions
discussed below. In part, the approach will undoubt-
edly be improved by new force fields, and many
groups continue to work in this area.170 One encour-
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aging recent example, also made in a bona fide
prediction setting, concerns the protein leptin derived
from the obesity gene. Bryant applied a threading
tool to propose that leptin may be a helical cytok-
ine.171 The receptor for leptin was later identified
and shown to belong to the family of cytokine recep-
tors.172 Very recently, the crystal structure of a
variant of human leptin was solved, showing a good
correlation between the model based on threading
and the experimental structure.173 The CASP2
threading project in December 1996 produced ad-
ditional results, which will be reviewed else-
where.130,148,174

B. Knowledge-Based Modeling
Homology modeling is best defined strictly as the

process of identifying a protein with known confor-
mation that is a homolog of a target, where the
conformation of the homolog is used as a starting
point to model the conformation of the target.136,137
A process that appears similar, but is different in
terms of its underlying philosophy, is “knowledge-
based” modeling. Here, a database of peptide frag-
ments with known conformations is assembled from
the crystallographic database (the “knowledge”).
Similar sequences in the target protein are then
identified, and modeled on the basis of the confor-
mational information in the database.142

Although somewhat similar in form, homology
modeling and knowledge-based modeling differ fun-
damentally in theory. Homology modeling assumes
that the conformation of the target protein is similar
to the conformation of the homolog in the databank
because the proteins are homologs. Knowledge-based
modeling assumes that the conformation in the target
protein and the protein in the databank are similar
because of intrinsic tendencies of similar polypeptide
segments to adopt similar folds.175 Thus, knowledge-
based modeling assumes that long-range “tertiary”
interactions are not important, while homology mod-
eling relies upon them. Knowledge-based modeling
is therefore best considered as an ab initio approach,
provided that the protein that is providing the
knowledge is not a homolog of the target protein.
An interesting illustration of the distinction be-

tween homology and knowledge-based secondary
structure prediction is provided by the SIMPA soft-
ware package developed by Levin and Garnier.132 The
package assigns secondary structure on the basis of
sequence similarity between a stretch of amino acids
(17 amino acids long) in the target sequence and the
sequences in a database of known structure. Simi-
larity in the two amino acid sequences might, of
course, indicate that the entire target protein is a
homolog of the entire reference protein. If so, this
secondary structure can be said to have been ob-
tained by homology modeling, and is accurate with
a Q3 of 87%. Alternatively, the target and reference
proteins might not be homologs. In this case, the
similarities in the sequences in the 17 amino acid
segment arose convergently. If the segments have
similar secondary structure, then the secondary
structure also arose convergently, and reflects in part
the intrinsic propensity of the amino acids particular
segment to adopt the specific secondary structure;

this is knowledge-based prediction. In this case,
however, the Q3 score drops to 63%.132

C. Ab Initio Approaches
Even should homology modeling work, it does not

address the larger challenge, ab initio prediction,
where a full conformational model is built without
reference to any experimental conformation of any
homolog. Ab initio prediction methods come in many
forms. As these are the principal focus of this review,
we will review each in some detail. At the outset we
should note, however, that one conclusion that might
be drawn from this discussion is that the distinction
between ab initio and homology modeling tools is not
always clear.
As with homology modeling, ab initio prediction

tools that assign secondary structure to a protein
using evolutionary information begin with an align-
ment. Again, the alignment shows the evolutionary
relationship between individual amino acids in two
or more homologous protein sequences. As before,
amino acids matched in the alignment are encoded
by codons in their respective genes that are presum-
ably descendants of a single codon in a single
ancestral protein.
Given an alignment, one way of extracting confor-

mational information is simply to apply the same
secondary structure prediction tool to each of the
homologous sequence individually and then extract
a “consensus” secondary structure prediction for the
whole family by averaging these individual predic-
tions. For example, a “consensus Chou-Fasman”
prediction is obtained by applying the Chou-Fasman
heuristic to each member of a protein family and then
by averaging the individual predictions. A “consen-
sus GOR” prediction is obtained in the same way
using the GOR heuristic.
Alternatively, the alignment might be inspected

residue-by-residue, with patterns of variation and
conservation used to infer information about the
conformational environment for each individual posi-
tion. This process, occasionally known as looking
“down” an alignment (as opposed to looking “across”
an alignment), is different in its implementation from
the “consensus” approach noted above.
Both approaches have been explored in the past

decade, and both must consider the way in which
homologous protein sequences are averaged, or
weighted, in the analysis. It is generally incorrect
to make a numerical average (or “majority rule”) to
obtain a consensus prediction. Ten closely similar
proteins with the same conformation should not carry
10 times the weight of one distantly homologous
protein in a consensus prediction. When averaging
any property across a family of homologous proteins,
the relationships between members of the family
must be considered. The most effective use of evo-
lutionary information comes with a per stirpes analy-
sis that weights lineages (branches in a tree) accord-
ing to their priority of divergence. This will be
discussed in greater detail below.

D. Bona Fide Predictions Made with Consensus
Classical Methods
A simple method for exploiting the similarities in

the conformations of homologous proteins in a pre-
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diction, but without the need to identify a homologous
protein whose structure has already been solved, is
to simply apply a classical prediction method to each
member of a protein family, obtain separate predic-
tions, and then average the individual predictions in
some way to obtain a consensus model. This ap-
proach assumes that the mistakes made by a classical
method using a single sequence represent “noise”.176
Should this be the case, averaging secondary struc-
tural predictions over a set of sequences that differ
in their details but which fold to give the same
secondary structure overall should filter out the
noise, leaving behind the signal.
The “consensus classical” approach was identified

first by Lenstra et al., who applied three classical
methods individually to each member of a family of
pancreatic ribonucleases.26 Two probabilistic tools
(Chou-Fasman104 and Burgess-Scheraga177) and the
physicochemical tool developed by Lim120 were used.
The results were then compared with a known crystal
structure for the ribonuclease family.
Overall, the results obtained by averaging these

particular classical prediction tools were disappoint-
ing, despite the use of evolutionary information. The
secondary structure assignments made for the ribo-
nuclease homologs by the Burgess-Scheraga method
were not consistent, and it was difficult to obtain a
sensible average secondary structural model over the
entire protein family. The Chou-Fasman method
provided more consistent assignments for individual
sequences in the protein family, but the overall
retrodiction was disappointing. This suggested that
the Chou-Fasman parameterization contained sys-
tematic errors, which cannot be removed by averag-
ing. Only the Lim method showed promise. Lenstra
et al. also pointed out that hydrophobic side chains
are not only frequently found inside globular struc-
tures, but that hydrophobicity is often conserved at
critical interior positions during divergent evolu-
tion.26

The notion of averaging predictions made by clas-
sical tools for individual members of a protein family
over a set of homologous protein sequences has
recurred often in the literature. Maxfield and Scher-
aga noted that small improvements could be made
in predictions by averaging predictions made on
individual sequences over a set of homologous se-
quences.25 Similarly, Garnier et al. suggested that
predictions made with the use of their method might
be improved by averaging predictions obtained from
homologous sequences.64 These suggestions have
recently been analyzed systematically. Adding ho-
mologous protein sequences over a set of homologous
sequences appears to improve the three state residue-
by-residue score (Q3) of an average prediction by
5-10 percentage points.178 Regrettably, this ap-
proach has not been evaluated with more useful
scoring methods, and has not been quantified in
detail with respect to different parameters of the
evolution of sequence families. It would be interest-
ing to know whether improvements obtained when
classical methods are applied to a family of homolo-
gous sequences arise disproportionately in core re-
gions of the fold, and reflect fewer serious errors. A
recent paper takes the first steps in this direction.179

Nevertheless, the consensus classical approach has
been used frequently to make bona fide predictions
that have an element of transparency. These are
therefore the first that we will discuss that fall
directly within the scope of this review. Many of
these predictions can now be analyzed by a subse-
quently determined experimental structure. These
are listed in Table 2, and discussed individually
below.

1. All Helical Proteins
Because helical proteins have a distinctive signa-

ture in their circular dichroism spectra, they are easy
to recognize with relatively little experimental effort.
Therefore, helix bundles were among the first chal-
lenges to classical methods averaged over a set of
aligned homologous protein sequences. As the ex-
amples below illustrate, the effort met with consider-
able success.
Interferons were among the first proteins examined

in this way using the “consensus classical” ap-
proach.24,180 Sternberg and Cohen applied classical
prediction heuristics to make secondary structure
predictions for four homologous interferons, and then
averaged the predictions to generate a consensus
prediction for the interferon family. This was then
used as the starting point for tertiary structural
modeling. Although no crystal structures were known
for any member of the interferon family when the
prediction was made (making it a bona fide predic-
tion), the prediction was not based solely on sequence
data. Circular dichroism data suggested that the
polypeptide chain adopted only helical secondary
structures,181 and this information was used to guide
the prediction. Much later, an experimental struc-
ture became available for the interferon family.182
When analyzed in detail in light of an evolutionary
alignment,183 four of the five helices in the protein
were correctly predicted (Figure 8).
Circular dichroism data also indicated a helical

structure for much (90%) of the extracellular domain
of the aspartate receptor from Escherichia coli.184
This information was combined with information
derived from patterns of hydrophobicity and hydro-
philicity, suggesting helical conformations. The amino
acid sequences in each of these regions was correlated
with similar regions in other bacterial receptors.
Chou-Fasman analysis was used to identify turns
in the structure, and a crude energy minimization
was done to evaluate possible packings (Figure
9).185,186 As Figure 9 shows, the positions of the
helices as assigned from experimental data were
predicted quite well, even though their lengths were
significantly underestimated.
Likewise, Taylor and Geisow187 and, later, Barton

et al.,188 exploited circular dichroism data that sug-
gested that the annexins formed largely helical

Table 2. Consensus Classical Prediction

predictions made with input from circular dichroism data
interferon24,180
aspartate receptor184
annexin187

predictions made without input from circular dichroism data
tryptophan synthase27
glutamine amidotransferase197
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structures. Taylor and Geisow subjected each an-
nexin to a secondary structural analysis using the
GOR tool,64 with the decision constants preferentially
chosen to favor helix predictions. This analysis found
each of the helices later assigned to the experimental
structure (Figure 10), with the third, fourth, and fifth
helices incorrectly joined into one long helix.
Using an unbiased set of parameters, these helices

were separated, but one helix was mispredicted as a
strand by the consensus GOR tool (a “serious”
mistake, see above). The two predictions with biased
and unbiased decision constants are shown in Figure
10. Taylor and Geisow combined the two to obtain a
model that corresponded closely to the subsequently

determined experimental secondary structure, both
in the position and length of the predicted helices.
Barton et al. did a similar analysis using a variety
of methods, including that of Zvelebil et al.,21 Chou
and Fasman,104 and GOR.64 In this respect, theirs
was a joint prediction guided by circular dichroism
data. Their predictions, also collected in Figure 10,
are largely consistent with those of Taylor and
Geisow.
Taylor and Geisow took the next step, using their

secondary structure prediction as the starting point
for modeling tertiary structure. They began by
searching the crystallographic database for an ex-
perimental structure built from a set of secondary

Figure 8. Representative sequences, bona fide consensus prediction,24 and experimental182 secondary structure for the
interferon R family. The target protein used in the prediction was different from the protein whose crystal structure was
ultimately solved. Both protein sequences are shown for comparison. Key: H, R helix.

Figure 9. Representative sequences, bona fide consensus prediction,186 and experimental185 secondary structure for the
extracellular domain of the aspartate receptor from E. coli. Residues 31-188 constitute this extracellular aspartate binding
domain. Sequences of three homologous receptors are given: (a) (P02941, MCP2 SALTY) methyl-accepting chemotaxis
protein II (MCP-II)(aspartate chemoreceptor protein) Salmonella typhimurium; (b) (P07017, MCP2 ECOLI) methyl-
accepting chemotaxis protein II (MCP-II) (aspartate chemoreceptor protein) Escherichia coli; (c) (P02942, MCP1 ECOLI)
methyl-accepting chemotaxis protein I (MCP-I) (serine chemoreceptor protein) Escherichia coli. Key: asterisks (*) indicate
amino acids that are conserved; periods (.) indicate amino acids that have undergone conservative substitution. Key: E,
â strand; H, R helix; t, turn.
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structural elements similar to those that they had
predicted for the annexins. The bovine intestinal
vitamin D-dependent calcium-binding protein (ICaBP)
met their specifications and served as a template for
tertiary structural modeling of annexin. This super-
imposition made no direct presumption of homology
and might be viewed as knowledge-based modeling.
While the annexin prediction was not an explicit

search for homologous structures, secondary struc-
ture predictions could clearly be used to identify long-
distance homologs where secondary structure, but not
sequence, had been sufficiently conserved. For ex-
ample, Pearl and Taylor189 and Bazan and Fletter-
ick190 were able to interpret a secondary structure
prediction made by consensus GOR prediction for
viral proteases with unknown structure to confirm
the speculation that these proteases are homologs of
aspartic proteases with known experimental struc-
tures. This is a form of threading, where predicted
secondary structural information is used to help in
the detection of long-distance homologs (see below).

2. Moving Up to R−â Barrels

No prediction method can be considered to be
general if it is successful only with helix bundles,
especially if circular dichroism data are required to
bias decision parameters to favor an all-helical

structure. The first to use a “consensus classical”
strategy in a fully a priori sense without supporting
circular dichroism data were Kirschner and his
colleagues.27 The GOR method64 was applied to
individual sequences of the R domain of tryptophan
synthase (Figure 11). A preliminary prediction used
unbiased decision constants. After an R-â structure
was inferred from the results, decision constants
optimized for R/â proteins were used. The predictions
were then averaged in a non-tree-weighted procedure
to yield a consensus model.
A consensus Chou-Fasman104 prediction was also

obtained, as was a hydropathy index profile using the
Kyte-Doolittle tool.192 Finally, the average chain
flexibility was predicted using the algorithm of Kar-
plus and Schulz.193 Significantly (see below), the
prediction also used gaps in the sequence alignment
to place breaks in secondary structure.
The results of these combined analyses suggested

that tryptophan synthase folds to give an eight-fold
R-â barrel, a class of protein well known in the
database.194 The crystal structure191 showed this
prediction to be correct, although with a noncore
secondary structural element mispredicted and the
final â strand shifted (Figure 11). Subsequent analy-
sis suggested that the “consensus GOR” prediction
method might be generally useful in predicting such
barrels.195 As the GOR program is parameterized on

Figure 10. Representative sequences, bona fide consensus prediction, and experimental secondary structure for annexin.
Prediction 1 was made from a multiple alignment using a consensus GOR method with unbiased decision constants.
Prediction 2 was made from a multiple alignment using a consensus GOR method with decision constants biases to favor
all helices to reflect circular dichroism data. Predictions 1 and 2 are adapted from ref 187. Prediction 3 was made analogously
(see ref 188). Experimental secondary structure is taken for ANX5 HUMAN annexin V (lipocortin V, endonexin II). The
target protein used in the prediction was different from the protein whose crystal structure was later solved. Both protein
sequences are shown for comparison. Key: E, â strand; H, R helix; t, turn.

Figure 11. Representative sequence, bona fide consensus prediction,27 and experimental191 secondary structure for
tryptophan synthase (R chain). Experimental secondary structural assignments are taken directly from SwissProt entry
TRPA SALTY, tryptophan synthase R chain (EC 4.2.1.20) from Salmonella typhimurium. Key: E, â strand; H, R helix; t,
turn. In the prediction, “e” refers to a weakly predicted strand, while “E” refers to a strongly predicted strand; “H” refers
to a strongly predicted helix.
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a database containing many such folds,64 this success
is perhaps not surprising.
A parallel prediction was made for tryptophan

synthase by Hurle et al.196 These authors exploited
circular dichroism data, which suggested that the
protein adopted an R-â structure. They then applied
a turn heuristic to a multiple alignment of eight
homologous sequences. Secondary structure was
assigned by using a pattern based method. The
resulting secondary structural model was used to
build a tertiary structural model. A biochemical
experiment caused the predictors to exclude (incor-
rectly) a barrel structure in favor of a â-sheet
structure. Otherwise, the prediction had the same
merits as the prediction by Kirschner and his group.
Looking to extend this success, Niermann and

Kirschner applied a similar analysis to the G-type
glutamine amidotransferase family of proteins, and
again detected an R-â pattern of secondary structure
(Figure 12).197 They then suggested that the pre-
dicted secondary structure was again compatible with
an eight-fold R-â barrel topology. Here, the predic-
tion method made several mistakes, as shown in
Figure 12, which records the secondary structural
assignments made on a similar domain in GMP
synthetase.198 Most notably, â strands 5, 6, 8, and 9
were missed, a helix between strands 6 and 7 was
overpredicted, and strand 10 was mispredicted as a
helix. As a result, what was a largely â domain in
the experimental structure was mispredicted by the
consensus GOR methods to be an R-â structure.
The consensus GOR has overpredicted R-â struc-

tures elsewhere. Poulter and his group used a
consensus GOR method to predict the secondary

structure of a family of enzymes that synthesize
isoprenyl diphosphates, starting from a set of ho-
mologous protein sequences. Again, the consensus
GOR analysis predicted a structure built from eight
helices interrupted by four strands (Figure 13).199 A
subsequently determined crystal structure found a
fully helical structure.200 Helix 3 was mispredicted
as a strand, while helix 9 was misassigned in part
as a strand. Two shorter predicted helices were
found in the experimental structure as one long helix,
while one long predicted helix was assigned in the
experimental structure as two shorter helices.
These three bona fide prediction results seem to

confirm what is suggested anecdotally by retrodic-
tion-based studies with known structures using the
consensus GOR approach. Consensus GOR ap-
proaches appear to be biased in their predictions to
favor R-â proteins. This bias may reflect the fact
that such structures are richly represented in the
database upon which the GOR tool is parameterized.
Averaging over a set of homologous sequences evi-
dently tends to amplify rather than eliminate this
bias, leading to the prediction of R-â conformations
even where they do not exist. Parameters may be
deliberately altered to favor a structure that is
suspected based on circular dichroism or other data
(as was done with annexin, see above). However,
consensus classical approaches were unable to iden-
tify any important secondary structure feature of the
Src homology 3 domain (see below),65 which adopts
a fold that was underrepresented in the crystal-
lographic databases at the time it was predicted.
This discussion is unfortunately clouded by a

recent report that the GOR heuristic is not imple-

Figure 12. Representative sequences, bona fide consensus prediction,197 and experimental198 secondary structure for
glutamine amidotransferase: (a) GMP synthase (glutamine-hydrolyzing) (AC)P04079, GUAA ECOLI) Escherichia coli;
(b) GMP synthase (glutamine-hydrolyzing) (AC)P44335, GUAA HAEIN)Haemophilus influenzae; (c) anthranilate synthase
component II (AC)Q08654, TRPG THEMA) Thermotoga maritima; (d) anthranilate synthase component II (AC)Q02003;
TRPG LACLA) Lactococcus lactis; and (e) anthranilate synthase component II (AC)P00900,TRPG SERMA) Serratia
marcescens. Key: E, â strand; H, R helix.
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mented as originally described in the original papers,
in at least some computer packages.107 With different
packages available in different versions, it has proven
difficult to determine for any individual prediction
exactly what implementation is used. Nor is it
possible to learn the impact of the incorrect imple-
mentation on this discussion, short of repeating all
of the predictions using an authorized implementa-
tion of the program. This has not yet been done.
By the time that the CASP1 project began, many

variants of consensus classical methods were avail-
able. As CASP1 brought together predictions made
by many methods, these are discussed in detail in
section VI of this review.

E. Consensus Probabilistic Tools Combined with
Consensus Physicochemical Methods

The next step in the development of the consensus
classical heuristics involved coupling probabilistic
and physicochemical tools to make joint predictions,
but where a multiple sequence alignment is used as
an input. This approach has now been successful in
several instances within a bona fide prediction set-
ting. For example, Bazan recently applied GOR
methods to individual members of the cytokine
receptor superfamily to obtain an average secondary
structure prediction for the family (Figure 14).201
Information concerning amphiphilicity and predicted
â turns was then added. From this analysis, the

cytokine receptor was proposed to be an all-â struc-
ture, with a folding topology similar to that found in
immunoglobulin molecules. A subsequently deter-
mined crystal structure shows the close correspon-
dence between the placement of the strands in the
model and the position of the strands in the experi-
mental structure (Figure 14), even though the ter-
tiary structure proposed to assemble the â strands
proved to be slightly different from that found
experimentally.202 In addition to being a powerful
demonstration of the approach, the prediction shows
the importance of expert involvement in a prediction
exercise, in particular, an expert who knows some-
thing about the biochemistry of the target protein and
uses what he/she knows while making the predic-
tion.91 This truism is now becoming more widely
appreciated, even by workers in the area whose
research is predominantly computational.203

F. Nontransparent Parameterized Methods To
Predict Secondary Structure

Physicochemical analyses are transparent, as they
are based on chemical principles that are relevant
for protein and nonprotein molecules alike, and
understandable to anyone trained in chemistry.
Probabilistic methods are less so, as they are derived
by parameterization processes that are not general
to other classes of molecules, and may not be general
to other types of proteins (for example, membrane

Figure 13. Representative sequences, bona fide consensus prediction,199 and experimental200 secondary structure for
farnesyl diphosphate synthase. The overprediction of an R-â structure is noteworthy: (a) farnesyl pyrophosphate synthetase
(AC)P14324; ID)FPPS HUMAN, (EC 2.5.1.10) Homo sapiens; and (b) farnesyl diphosphate synthase (PDB 1fps). Key:
E, â strand; H, R helix; t, turn. An active-site residue at position 117 is indicated.
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proteins). Nevertheless, they gain a degree of trans-
parency through analyses such as that above, which
provide possible physicochemical reasons underlying
the propensities.
In recent years, fully nontransparent methods have

also emerged that exploit the fact that homologous
protein sequences have similar conformations. These
have been dominated by neural networks, suggested
some time ago as tools for predicting the secondary
structure of proteins.205,206 A neural network is a
computer construct that connects many nodes, each
of which operates on data that comes to it from other
nodes (or from the outside). The neural network is
“trained”, a process in which the weights of connec-
tions are adjusted on the basis of data so that the
network generates a known output from input data
in a “training set”. In this manner, the neural
network “learns” on the basis of examples and can
then apply the rules that it has learned to new
problems.
When applied to predicting secondary structure

from single sequences, the first generation of neural
networks gave little improvement over classical
methods, at least as far as can be judged from
classical scoring tools (see below).207 Very recently,
however, neural networks trained on multiple align-
ments have been shown to perform better.19,208,209
Average, cross-validated three-state scores have been
improved from 60% to 72% in retrodictive tests.19,209
Again, the three-state scores do not reveal many
important details of the retrodiction. It is conceivable
that the modest improvement in the three-state score
hides a dramatic improvement in performance con-
centrated in core secondary structural elements.
For example, an early report suggested that the

Heidelberg neural network (the “PHD” tool) might
be able to detect internal helices,176 a type of second-
ary structural element that is at the core of a fold,
and is often difficult to detect (see below). This
suggestion arose from a retrodiction of a secondary
structure for the protein kinase family of proteins.
It was later noted that this retrodiction was not
repeatable.210 The reason for this remains unclear;
it appears that in an early implementation of the
PHD server, when a target sequence submitted to the
network was a duplicate of a sequence already in the
database, that sequence was counted twice, and the
ability of neural network methods to identify internal
helices has not yet been systematically explored.

Neural networks were first applied in a bona fide
prediction setting in a project designed to compare
transparent predictions, consensus classical predic-
tions, and PHD predictions. The developers of the
PHD tool had twice claimed that the neural network
performed better than transparent methods. Both
involved comparison of a bona fide prediction made
transparently with a retrodiction made by PHD,
however, which is not a fair comparative test of two
methods.176,211 Therefore, it was decided to allow all
methods competing on equal grounds. The target,
suggested by Professor Edgar Meyer (Texas A&M),
was the family of proteins that includes the metal-
lohemorrhagic proteinase from snake venom.90 Ex-
perimental structures from two groups subsequently
emerged.212-215,219

The results are shown in Figure 15. The three-
state score Q3 for the transparent prediction is 70%
(Table 3), slightly higher than the consensus neural
network prediction (66%) and much higher than the
consensus GOR and Chou-Fasman predictions (Table
3). However, the differences between the predictions
can be best seen by examining the misassignments.
Of 202 positions in the alignment, the transparent
prediction makes R-for-â misassignments at only two
positions. The other predictions make considerably
more. This is not because the transparent prediction
made fewer R and â assignments overall; in fact, the
transparent prediction makes the most. Rather, the
transparent prediction made essentially no serious
residue misassignments, while the neural net predic-
tions did. Two of the three misassignments in helical
regions would have been particularly problematic
when assembling a tertiary structural model. Mis-
takes made in the transparent prediction are dis-
cussed below.
The PHD neural network has undergone revision

subsequent to this test, and its output has improved.
The first large-scale test of the PHD neural network
in a bona fide prediction setting was done as part of
the CASP1 project. As CASP1 brought together
predictions made by many methods, these are dis-
cussed in detail in section VI of this review. An
assessment of these predictions, both by the predic-
tors themselves and by independent judges,62 pro-
vides an overall view of the tool as applied in a bona
fide prediction setting. The CASP1 predictions are
discussed in greater detail below in the section that
focuses on bona fide predictions. To illustrate the

Figure 14. Representative sequences, bona fide consensus prediction,204 and experimental202 secondary structure for the
cytokine receptor family. The experimental structure is for the complex between human growth hormone and extracellular
domain of its receptor: (a) growth hormone receptor GHR HUMAN; and (b) growth hormone receptor GHRH MOUSE
(Ile 128 at the start of the domain is marked). Key: E, â strand; *, conserved amino acid.
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application of the PHD tool, we discuss here briefly
the prediction for urease generated by Hubbard and
Park using the PHD neural network server.216

Urease has three subunits.217 Hubbard and Park
made predictions for the â and γ subunits. The γ
subunit is largely helical, while the â subunit is
largely strand. The PHD program produced an
essentially perfect prediction for the γ domain (Figure
16), although evidently after some manual adjust-
ment of the multiple alignment that it produced.216
The prediction for the â domain missed only one of
the core strands, assigning it as part of a long helix.
Thus, this prediction can be judged as being very
good.
In the CASP2 project (see below), a neural network

developed by Rost and his co-workers performed well,
both as applied by Rost (21 predictions, mean Q3
score of 74, with 13 predictions having a Q3 > 68%),
or as applied by others (for example, Flohil, de Hoop,
and Freitman, with a mean Q3 score of 71, with 12

predictions having a Q3 > 68%). Similar scores were
obtained by the method of Solovyev and Salamov,81
and by the method of King and Sternberg.106 These
are reviewed elsewhere130,174 and in greater detail
below.

V. Models for Molecular Evolution and Their Role
in Structure Prediction

To this point in this review, three ways evolution-
ary information might be used to assist protein
structure prediction have been discussed. First,
evolutionary information may identify a reference
protein having a known structure as a homolog of
the target protein. Second, evolutionary information
may be used to average single predictions made
classically, in the hope of filtering out noise. Last, a
set of homologous proteins might be used to train a
neural network, with the additional information
exploited in a way hidden within the network.

Figure 15. Representative sequences, experimental secondary structures, and bona fide consensus predictions90 for the
hemorrhagic metalloproteinase family. Key: E, â strand; H, R helix; T, turn; G, 310 helix; B, â bridge; S, bend. Lines
designated as follows: (a) Atrolysin;213 (b) Adamalysin;212 Z, prediction made by transparent method; RS, prediction made
by PHD server; GOR, consensus GOR prediction; and CF, consensus Chou-Fasman prediction, as implemented in the
GCG package.

Table 3. Summary of the Results of the Prediction Contest for Hemorrhagic Metalloproteinase90,214,a

three-state
residue score, %

no. of assignments
(total):
R + â

no. of correct
assignments:

R + â

no. of seriously
incorrect assignments:

R vs â

Florida 69.8 131 97 5
Heidelberg neural network (RS) 63.8 114 70 24
GOR 54.9 81 51 16
Chou-Fasman 45.0 122 38 43
a Three-state residue scores are calculated by dividing the number of correct assignments (R + â + coil) by the total length of

the alignment, following the classical scoring paradigm. A seriously incorrect assignment is one where a residue in a helix in the
experimental structure is predicted to be in a strand, or vice versa. Figure 15 should be inspected to obtain a more comprehensive
view of the quality of the predictions. Slightly different values are obtained when using different experimental structures.215
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None of these approaches considers explicitly the
underlying processes by which proteins themselves
diverge under functional constraints and how an
understanding of these processes might be used to
design prediction tools. The explosion in the size of
the protein sequence database made possible a
detailed study of these processes.220 These studies
have identified a different general approach for using
homologous protein sequences to make structure
predictions. The primary advantage of the approach
is that it is quite transparent. A prediction for
protein conformation can be analyzed just as a
conformational analysis can be done with smaller
molecules. The approach has been used to make over
two dozen predictions to date, many of which have
been remarkably accurate. Further, the mistakes
made in these predictions have been instructive, and
much has been learned both about protein folding
and methods for making predictions as a result.

A. Understanding the Details of Molecular
Evolution

1. The Alignment

To have a transparent view of evolutionary analy-
sis as a tool for making secondary structure predic-
tions, we must begin by understanding the key
element of an evolutionary analysis: the sequence
alignment.221,222 As noted above, an alignment at-
tempts to represent the evolutionary relationship
between two protein sequences by placing them side-
by-side so that codons encoding amino acids paired
in an alignment have arisen from a single codon in a
single ancestral gene, at least with the highest
probability. An example of an alignment of two
protein sequences, here chosen from two homologous
protein kinases, is given in Figure 17. Let us ask
how this alignment was constructed and what is
shows.
An alignment shows what amino acid substitutions

have been accepted since two proteins diverged from
their common ancestor. These substitutions are not
random if the descendent proteins have served func-

tions in the descendent organisms (that is, assuming
that the proteins have “diverged under functional
constraints”). Most proteins have a function that
contributes to the ability of their host organism to
survive, select a mate, and reproduce. To perform
this function, proteins adopt a fold, or tertiary
structure, a structure that is conserved much more
highly than the sequence itself.
Function therefore constrains what amino acid

substitutions are accepted during divergent evolu-
tion; some substitutions are never observed because
they are lethal to the host organisms. Other substi-
tutions help the protein perform its selective function
(positive, or adaptive substitutions) and will be
incorporated at a high rate, especially when a new
function is emerging. Still other substitutions rep-
resent neutral drift in the structure,223,224 having no
selectable impact on the fitness of the protein.
In principle, an alignment is “correct” if it correctly

represents actual events in the historical past; a
correct alignment matches amino acid codons that
are descendent from a single codon in an ancestral
protein, correctly reconstructs ancestral sequences,
and indicates substitutions, insertions, and deletions
as they actually occurred during historical evolution.
Proving that an alignment is correct is essentially
impossible, of course. In some cases, the ancestral
genes have been synthesized, in part to test this
premise.36-39 In general, however, the accuracy of
an alignment is judged by a score that represents the
probability that an alignment has done what it
should do.

Figure 16. Predicted216 and experimental217 structures for urease from Klebsiella aerogenes (P18314, 1kau). The predicted
structures were submitted for the CASP1 prediction project.148 The prediction of Hubbard was built using the PHD neural
network server.218 The prediction of Matsuo was based on threading to macromomycin (2mcm) for the â domain and to
endathiapepsin (PDB 2ert) for the gamma domain. Key: E, â strand; H, R helix.

Figure 17. Part of an alignment of two protein kinase
sequences, used in the text to illustrate how transparent
tools for predicting elements of tertiary and secondary
structure work. A vertical line (|) indicates an identical
match in the alignment. An exclamation point (!) indicates
a mutation with high probability.

Bona Fide Predictions of Protein Secondary Structure Chemical Reviews, 1997, Vol. 97, No. 8 2751



The basic element of score is the probability that
the proteins whose sequences are being aligned are
in fact related by common ancestry. This score is
often expressed as logarithm of the probability that
the similarities in the two sequences seen in the
alignment arose by reason of common ancestry,
divided by the probability that these similarities
arose by random chance. This probability is gener-
ally obtained by comparing the aligned sequences one
position at a time. Under this procedure, a score is
first given to each pair of amino acids matched in
the alignment.225 This pairwise score is the loga-
rithm of a probability that the two amino acids will
be paired in a protein by reason of common ancestry,
divided by the probability that they would be paired
by random chance. This probability is derived from
one of the many “log odds” matrices that provide
pairwise probabilities for the 210 possible amino acid
pairs (Figure 18).226 Gaps in the alignment are
penalized, the pairwise terms are summed for the
entire alignment, and the resulting score reported.
The evolutionary distance between the two sequences
is then measured in PAM units,225 the number of
point accepted mutations that the two protein se-
quences have suffered (per 100 amino acids) since
they diverged an unspecified number of years ago.
Underlying these processes for constructing and

evaluating an alignment is a model for the way amino
acids undergo substitution during divergent evolu-
tion.224 The model is “first-order” Markovian in that
it assumes that subsequent amino acid substitutions
in a protein occur with a probability independent of
previous substitutions, that substitutions occur in-
dependently at different positions in the polypeptide
chain, and that a single substitution matrix can
represent the probability of amino acid substitution
at any and all positions in a protein.
This model is, of course, an approximation. Real

proteins adopt three-dimensional conformations where
amino acids distant in the sequence come in contact
and therefore interact. Thus, residues in a protein
sequence need not undergo substitution independent
of substitution at other positions in the protein.
Likewise, biological function constrains the types of
amino acid substitutions that are acceptable to
natural selection. Therefore, amino acids need not
suffer mutation independently, either in sequence or

in time. The Markov model should fail when applied
to real proteins.
This failure, of course, contains information about

the “nonlinear” part of protein structure, that is,
conformation. Accordingly, non-Markovian behavior
during the divergent evolution of protein sequences
can be sought as a source of information for predict-
ing protein conformation.
For example, it has been well recognized that

amino acids near an active site are more conserved
than expected under the Markov model.21,26 Con-
versely, positions on the surface of a folded structure
tolerate more variation than positions inside.15,26,227-233

Thus, it is widely assumed that if an amino acid
carrying a functional group is conserved over a wide
PAM distance, it lies at or near an active site.
With the growth in the protein sequence databases

and improvements in tools for organizing them,220
systematic studies have been made to identify fea-
tures of divergent sequence evolution where the
Markov model fails and to use these failures system-
atically to develop heuristics for predicting protein
structure.15,91,234 In brief, the approach allows one
to do a residue-by-residue analysis that does not
assume that local sequence determines local confor-
mation. This insight has allowed the development
of an important class of transparent structure predic-
tion tools.91,234

2. Understanding Divergent Evolution: Substitution
Matrices

To extract conformational information from non-
Markovian behavior in protein sequences undergoing
divergent evolution, we must first learn to identify
and understand the behavior expected from the
Markovian model. Central to the first-order Mark-
ovian model is a matrix describing the probabilities
of each amino acid undergoing replacement by each
of the 19 other proteinogenic amino acids. These
symmetrical 20 × 20 matrices have indices that are
the 20 amino acids, and elements that are the
logarithms of probabilities that the index amino acids
will be paired in an alignment divided by the prob-
ability that the pairing would occur by chance.225
Thus, the diagonal elements of the matrix represent
the probabilities that the indexed amino acid will be

Figure 18. A “log odds” scoring matrix, which reports 10 times the common logarithm of the probability of two amino
acids being matched in a pairwise alignment by reason of common ancestry divided by the probability that these are
matched by random chance.220 This matrix is optimized to align protein pairs ∼150 PAM units apart.
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conserved (i.e., that the amino acid will be matched
against itself), while the off-diagonal elements rep-
resent the probabilities that an amino acid will be
replaced by one of the other 19 amino acids (Figure
18).
A scoring matrix is defined for a specific PAM

distance. This is most easily seen by considering the
diagonal and off-diagonal terms. In a matrix de-
scribing the alignment of two closely related proteins,
the diagonal terms are large relative to the off-
diagonal terms; more amino acids have been con-
served than have been replaced. In contrast, in a
matrix describing two distantly related proteins, the
diagonal terms are small relative to the off-diagonal
terms; many more amino acids have been replaced
than have been conserved. Indeed, the PAM distance
between two protein sequences is the PAM distance
of the scoring matrix that best describes the pairing.
Thus, the score of an alignment of the sequences of
two proteins that have diverged by one point accepted
mutation per 100 amino acids is highest when the
alignment is scored using the 1 PAM scoring matrix.
The alignment of two sequences that have diverged
by 10 PAM units receives the highest score with the
10 PAM scoring matrix.
These scoring matrices can, of course, be con-

structed directly from empirical data. To do this, a
statistically large collection of pairwise alignments
must be collected for protein pairs that have diverged
(for example) 1 PAM unit. From these, the number
of times each of the 210 possible pairings occurs in
the alignments must be tabulated, and normalized
to give logarithms of probabilities. To get a scoring
matrix appropriate for proteins that have diverged
10 PAM units, the process must be repeated, but with
protein pairs that have diverged by 10 PAM units.
This is not how the matrices have generally been

calculated, however. Under the Markov assumption,
subsequent amino acid substitutions are independent
of earlier substitutions. If this assumption is correct,
the matrix describing an alignment of two protein
sequences 10 PAM units distant can be obtained by
multiplying the 1 PAMmatrix by itself 10 times. This
process (raising the 1 PAMmatrix to the 10th power)
is equivalent (given the Markovian assumption) to
evolving a protein sequence through 10 successive
evolutionary steps, each 1 PAM unit in length. This
process assumes that substitutions occurring at the
nth step occur independently of the substitutions in
the (n - 1)th step.
In the original work of Dayhoff,225 a scoring matrix

applicable for proteins 250 PAM units distant was
calculated this way. Empirical substitution data
were collected from alignment pairs of proteins only
5-10 PAM units distant. A matrix containing the
logarithm of the probability of each amino acid being
replaced by each of the others in these similar pairs
of proteins was then constructed, normalized by the
probability that each substitution would occur by
random chance. The PAM 250 matrix was then
obtained by multiplying the PAM 5-10 matrix by
itself the requisite number of times, a process that
assumes that subsequent mutations follow the same
pattern as earlier mutations.

Extrapolating from PAM 5-10 to PAM 250 is
substantial and requires that the Markov model for
amino acid substitution be valid over a considerable
evolutionary distance. We can, of course, test this
assumption by comparing a 250 PAM scoring matrix
obtained by normalizing data collected from protein
aligned protein pairs 5-10 PAM units with a 250
PAM matrix obtained by normalizing data collected
from protein pairs at longer evolutionary distances.
To the extent that these matrices are the same, the
Markov assumption that future and past substitu-
tions are independent holds. To the extent that they
are different, the differences measure the extent to
which amino acid substitutions in real proteins
deviate from the pattern predicted by the Markov
model.
This comparison has in fact been made, and the

deviation is large.235 Consider just two possible
replacements for the amino acid Trp (Table 4). In
proteins that have diverged only slightly, replace-
ment by Arg is probable (the logarithm of the
probability of the pairing is positive), while replace-
ment by Phe is improbable (the logarithm of the
probability of pairing is negative). This empirical fact
is chemically counterintuitive. The physical chem-
istry of Arg, which has a positively charged side
chain, is quite different from that of Trp (which has
a large hydrophobic aromatic side chain). Arg would
not be expected to be a good replacement for Trp to
maintain folding and function. In contrast, the
physical chemistry of Phe is similar to that of Trp;
both have aromatic rings in their side chain. There-
fore, natural selection should tolerate a Phe-for-Trp
substitution frequently.
Only at high evolutionary distances does the chemi-

cally more reasonable substitution of Trp by Phe
(which conserves the physicochemical properties of
the side chain) become probable, and the chemically
unreasonable substitution of Trp by Arg become
improbable.
Why are the physical chemical properties of the

Trp, Arg, and Phe side chains reflected in amino acid
substitutions only after long evolutionary distance?
The genetic code provides a possible explanation. At
short evolutionary distances, enough time has elapsed
to change only a single base in the triplet codon. For
the Trp codon (UGG), nine codons arise by single
point mutation (AGG, CGG, GGG, UAG, UCG, UUG,
UGA, UGC, and UGU). Two of these encode Arg
(AGG and CGG); none encode Phe. Thus, it appears
that at low evolutionary distances, the genetic code

Table 4. Ten Times the Logarithm of the
Probabilities That the Indicated Amino Acids Will Be
Matched in a Pairwise Alignment at the Indicated
Evolutionary Distancea

evolutionary
distance

probability of
Trp-Arg pairing

probability of
Trp-Phe pairing

5.5 1.5 -3.9
10.2 0.5 -0.9
42.5 -1.3 1.3
86.5 -1.8 3.0

a Evolutionary distances are measured in PAM units, the
number of point accepted mutations separating two sequences
per 100 amino acids. Ten times the logarithm of the probability
is reported.
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constrains amino acid substitution to enforce substi-
tutions that do not conserve the chemical properties
of the amino acid side chains. Examination of all of
the elements of the substitution matrix shows that
this conclusion is general for other pairs of amino
acids.150
Trivially, the genetic code should influence amino

acid substitution. One does not expect, however, that
the code will influence accepted amino acid substitu-
tion, substitution that does not compromise the
ability of the protein to contribute to survival and
reproduction. Remembering that a substitution must
be accepted by natural selection before it can appear
in a database, code-driven substitutions, especially
those that do not conserve physical chemical proper-
ties, are consistent with continued biological function
when they occur on the surface of the folded protein.
Thus, if a Trp-Arg pairing (for example) is observed
in an alignment, the position containing it can be
assigned to the surface of the folded structure. The
fragment of the alignment of protein kinase shown
in Figure 19 contains a Trp-Arg pairing. Therefore,
we conjecture that this position lies on the surface
of the folded structure.

3. Adjacent Covariation
By assuming that any substitution at position i in

a protein sequence is independent of the substitution
at position j, the Markov model also assumes that
adjacent amino acids undergo independent substitu-
tion. This is true only as an approximation. Enough
sequence data are now available to generate a dipep-
tide substitution matrix showing the probabilities for
each of the 380 possible dipeptides to be substituted
by each of the 380 possible dipeptides, normalized
by the probabilities expected if adjacent positions
undergo independent substitution.235
Again, substitution in real proteins deviates from

that expected from the Markov model. In particular,
if residue i is conserved, then the adjacent residue i
+ 1 is in general more likely to be conserved.
Conversely, if residue i is variable, then residue i +
1 is more likely to be variable (Table 5). This
empirical observation is a violation of the Markovian
assumption that substitutions occur independently
at adjacent positions in a protein sequence, but is not
unexpected from standard models of protein struc-
ture. If residue i lies on the surface of the globular
structure, it is likely that residue i + 1 also lies on
the surface. If residue i lies inside, then residue i +
1 is also likely to lie inside. Residues inside the

folded structure of a protein are more likely to be
conserved; residues on the surface are less likely to
be conserved. The empirically observed breakdown
of the Markov model is expected.
Surprising, however, are the exceptions to the

generalization (Table 5). If Pro or Gly is conserved
at position i, then position i + 1 is more likely to have
undergone variation. A structural conjecture might
explain these exceptions. If a Pro or Gly is conserved
when it induces a turn in the folded structure of the
protein, and if turns generally occur on the surface
of a folded structure,236 a conserved Pro or Gly is
likely to be adjacent to a surface position, which in
turn is more likely to tolerate amino acid substitu-
tion. Each of these steps implies deviation from
patterns of amino acid substitution expected from the
Markov model, deviations that can be detected in
analyzing sequence alignments and used to predict
conformation in a polypeptide chain. For example,
the fragment of the alignment of protein kinase
contains a conserved Gly adjacent to a substituted
position that might lie on the surface, and we might
conjecture that the polypeptide chain turns at this
point in the sequence (Figure 20).

Figure 19. Part of an alignment of two protein kinase
sequences, with an assignment of a single underlined
position in the protein to the surface of the folded structure
to reflect the code-driven substitution of an Arg by a Trp.
A vertical line (|) indicates an identical match in the
alignment. An exclamation point (!) indicates a mutation
with high probability.

Table 5. Correlation between Conservation and
Variation at Adjacent Positions in a Protein
Sequencea

conserved
amino acid

10 log(probability that adjacent
residue is conserved) -

10 log(probability that adjacent
residue is not conserved)

Pro -12.5
Gly -3.9
Glu -2.1
Lys 0.0
Asp 0.6
Ser 1.2
Leu 1.5
Ala 1.5
Asn 3.8
Arg 4.8
Gln 5.0
Thr 5.4
Phe 5.7
Ile 7.1
Tyr 8.0
Val 8.3
Cys 8.5
Trp 10.5
His 16.3
Met 16.8

a Values represent 10 times the logarithm of the probability
that the amino acid adjacent to the conserved amino acid will
also be conserved minus 10 times the logarithm of the
probability that the adjacent amino acid will not be conserved.

Figure 20. Assignment of a turn in the alignment of two
protein kinases. A vertical line (|) indicates an identical
match in the alignment. An exclamation point (!) indicates
a mutation with high probability.
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4. Gaps in an Alignment

During divergent evolution, portions of genes may
be added (inserted) or removed (deleted). This re-
sults in homologous proteins that contain different
numbers of amino acids. This implies, in turn, that
an alignment of sequences within a family of proteins
where insertions and deletions (“indels”) have taken
place will have unmatched amino acids, which form
“gaps” in the alignment. In an alignment of just two
homologous sequences, it is impossible to tell whether
the gap arose from an insertion event in the lineage
leading to the protein with additional amino acids
(implying that the ancestral protein had fewer amino
acids), or whether the gap arose from an deletion
event that removed amino acids from the ancestral
sequence in the lineage leading to the protein with
fewer amino acids. Therefore, the term “indel”, a
contraction of “insertion” and “deletion”, has been
adopted to refer to evolutionary events that place
gaps in an alignment.
The placement of gaps is a critical step when

constructing an alignment, and considerable research
has been devoted toward understanding how gaps
should be placed.89,237 In practice, one does not know
which amino acids have been inserted/deleted. Gaps
are placed to optimize a score associated with an
alignment. But if gaps are introduced without limit,
even two random sequences can be aligned to give a
perfect score. Therefore, gaps must be penalized to
enforce their judicious use. The most common scheme
for penalizing gaps charges a price for introducing a
gap, and an incremental price for each additional
amino acid that is added to the gap. This scheme is
conveniently incorporated into the dynamic program-
ming tools that implement the Markov model for
scoring amino acid alignments using substitution
matrices238,239 and implies that the probability of a
gap decreases exponentially with its length.
Analysis of real proteins shows that the probability

of a gap does not decrease exponentially with its
length.237 Rather, the probability of a gap in a
pairwise alignment is inversely proportional to its
length raised to the 1.7 power.89 The structural basis
for this empirical relationship is unknown, but some
hypotheses can be formulated to explain it. We may
assume that a polypeptide paired with a gap forms
a coil, that the ends of inserted or deleted segments
lie close in space, and that the laws governing the
conformation of free coils are followed by coils in a
polypeptide chain. The probability that the two ends
of a coil lie together in three dimensions is inversely
proportional to the mean volume occupied by the coil.
For a linear, unidimensional polymer, volume is
proportional to the length of the polymer chain raised
to the 1.5 power.240 Thus, the probability that the
two ends of a polypeptide will be near in space (and
therefore that the peptide segment can be deleted
without major change in the overall fold of the
protein) is inversely proportional to the length of the
polypeptide chain raised to the 1.5 power. From this,
the probability of a gap of length k occurring in a
pairwise alignment varies with k-1.5 follows.
Real polypeptides are not, of course, idealized

unidimensional polymers. Rather, the polypeptide
chain itself fills a volume. This excluded volume

raises the exponent in the formula relating volume
to length. This exponent is experimentally measur-
able, and depends to some extent on the composition
of the polymer. For a typical polypeptide, however,
the volume of a random coil is a function of length
raised to the 1.7-1.8 power.241 This exponent is
remarkably close to that needed to explain the
empirical gap-length distribution in terms of the
hypotheses outlined above.
If these hypotheses are true, gaps can convey

structural information. Whenever a gap is found, we
can assume that it indicates a “parse”, a point in the
polypeptide chain where secondary structure is bro-
ken.27 The fragment of the alignment of protein
kinase that we have been discussing itself contains
a gap (Figure 21). On the basis of this hypothesis,
we might conjecture that secondary structure preced-
ing this gap is independent of secondary structure
that follows.

5. Understanding the Behavior of Coils: Parsing Strings

As discussed in greater detail below, much of the
success of transparent tools for predicting helices and
strands arises from tools that predict regions that are
not helices or strands. Parsing tools divide a protein
sequence into segments that form standard second-
ary structure independently. By parsing a sequence,
secondary structure predictions need consider at any
one time only short segments of the polypeptide
chain, which is intrinsically easier than considering
the polypeptide chain as a whole. Thus, understand-
ing the evolution of loops is an important step toward
developing tools for predicting secondary structure
in proteins.
As discussed above, many polypeptide segments

adopt different secondary structures when embedded
in different tertiary structural contexts. Fortunately,
this does not appear to be the case for many se-
quences involved in loops. Strings (consecutive posi-
tions in a polypeptide chain) of Pro, Gly, Asp, Asn,
or Ser prove to be good indicators of a break, or parse,
in standard secondary structural elements.104 In
general, a longer parsing string is more reliable than
a shorter parsing string, and a string containing more
prolines is better than one containing fewer prolines.
Thus, a single Pro in a sequence is not a reliable
indicator of a parse. However, a Pro-Gly sequence
nearly always indicates a parse, while a Gly-Ser-Asn-
Ser sequence nearly always does as well.79

A large number of parsing strings have been
identified, especially those that combine information

Figure 21. Assignment of a coil in a gapped segment in
the alignment of two protein kinase sequences. A vertical
line (|) indicates an identical match in the alignment. An
exclamation point (!) indicates a mutation with high
probability. An indel (insertion or deletion) is indicated by
a dash (-).
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concerning the position of surface residues (see
below). Four consecutive surface residues indicate
a parse with high reliability.242 Parsing heuristics
based on strings are available through a server
accessible on the World Wide Web (URL http://
cbrg.inf.ethz.ch) and have been used in making the
transparent predictions described below.

6. Neutral vs Adaptive Variation
To this point, three pieces of tertiary structural

information have been collected regarding the protein
kinase fragments aligned in Figure 17 using a
transparent evolutionary analysis of homologous
protein sequences. At three points, the segment is
near the surface of the fold, at positions 126 and 149
because turns and breaks in secondary structure are
generally on the surface, and at position 137 because
of the code-driven Trp-Arg substitution at this posi-
tion. This is tertiary structural information, because
it relates the positions of these residues in three
dimensions to the overall fold. It is, however, only a
limited amount of tertiary structural information.
To get more information, we might exploit other

deviations in the Markov pattern of amino acid
substitutions. In particular, the well-known fact that
surface positions on a protein generally tolerate more
variation than positions inside227-230 suggests a simple
heuristic for assigning surface positions. In this
heuristic, positions in an alignment that contain one
or more “surface-indicating” amino acids (for ex-
ample, Lys, Arg, Glu, Asp, or Asn) and that are
variable, in particular, at low PAM distance, are
assigned to the surface.234
This heuristic is disappointing in its accuracy

(Table 6).234 On average, only 80% of the surface
assignments made using this heuristic are correct.
In some proteins (e.g., alcohol dehydrogenase), the
accuracy is as low as 69%. Considering that ap-
proximately 50% of the side chains of a typical
protein of this size lie on the surface of the folded
structure, this performance is not impressive.
Why is the performance so bad? Here, conjectures

concerning mechanisms of divergent evolution are
suggestive. Two types of variation occur as protein
sequences divergently evolve. Neutral variation
involves substitutions that do not influence the
ability of an organism to survive and reproduce.223,244
These are variations that have little impact on
behavior in a protein. From a structural viewpoint,
such variations should lie predominantly on the

surface of the folded structure. Thus, neutral varia-
tion is sought when attempting to identify surface
positions by seeking variation in an alignment.
Adaptive substitutions accumulate as well during

divergent evolution, however. Adaptive substitutions
alter the behavior of the protein, often to make it
better suited for a new environment or a new func-
tion. Mutations that alter function or create new
function are the opposite, structurally, of mutations
that do not influence function, and adaptive variation
need not lie on the surface of a protein. Indeed, it
may lie near an active site, a regulatory site, or inside
the folded structure of a protein.15,245
Unfortunately, neutral and adaptive variation ap-

pear the same at first inspection of a multiple
alignment. To use variation to identify surface
positions, therefore, heuristics must be developed
that separate (as much as possible) adaptive varia-
tion from neutral variation. No filter is known that
reliably distinguishes between neutral and adaptive
variation, as a rich literature in the field shows.244
However, a filter built on the notion of “concurrent
variation” has proven to be rather effective for the
purpose of structure prediction.234 To apply this
filter, positions are identified in a multiple alignment
where variation is observed simultaneously in dif-
ferent subbranches of the evolutionary tree. A posi-
tion is assigned to the surface of the folded structure
only if it is variable in more than one subbranch of
an evolutionary tree relating the sequences.
Surface assignments made by heuristics based on

concurrent variation in several subbranches of an
evolutionary tree are significantly more accurate
than those obtained by heuristics that search for
variation in a single subbranch (Table 6). This
improved accuracy has a cost, however. Several sets
of homologous sequences are needed to extract con-
formational information using this heuristic. For the
protein kinase alignment shown in Figure 17, 77
additional sequences were available in 1989. Adding
the surface assignments obtained from these ad-
ditional sequences to the larger multiple alignment,
together with assignments obtained from analogous
heuristics that identify interior positions in a protein
fold,234 the amount of tertiary structural information
available for the fragment increases remarkably
(Figure 22).
The step from pairwise alignments to multiple

alignments is not trivial, either methodologically or

Table 6. Accuracy of Surface Assignments made with
and without Concurrent Variationa

variation observed in

one
subbranch, %

more than one
subbranch, %

aspartate aminotransferase 82 93
alcohol dehydrogenase 69 86
lactate dehydrogenase 78 86
myoglobin 85 91
plastocyanin 91 100
phospholipase A 74 79
Cu/Zn superoxide dismutase 81 98

average 80 90
a In protein families diverging up to PAM 200.

Figure 22. Protein kinase fragment with complete surface
and interior assignments. S and s indicate strong and weak
surface assignments, respectively. I and i indicate strong
and weak interior assignments, respectively. A vertical line
(|) indicates an identical match in the alignment. An
exclamation point (!) indicates a mutation with high
probability. The gap in the alignment is indicated by a dash
(-).
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from the point of view of structure prediction. It is
the complexion of a multiple alignment, how many
sequences it contains, how much they have diverged,
and how they are interrelated, that ultimately de-
termines how much conformational information it
will yield. A discussion of tools for constructing
multiple alignments is, however, beyond the scope
of this review. In the discussion that follows, we will
assume that the multiple alignment exists.246 We
will identify cases where problematic multiple align-
ments cause mistakes in predictions made using tools
that analyze variation and conservation in homolo-
gous protein sequences.

B. Selecting the Hierarchy

Protein structure prediction has its own “chicken-
or-egg” paradox. This paradox arises because ter-
tiary structural interactions are often stronger than
local sequence interactions in determining secondary
structure.109-111 This implies that predicting second-
ary structure from primary structure is essentially
impossible without having at least some tertiary
structural information. At the same time, a reliable
model for secondary structure appears to be neces-
sary before a tertiary structural model can be built.
Thus, it appears that neither secondary nor tertiary
structure can be predicted before the other is in hand.
This paradox must be resolved before satisfactory
prediction tools can be developed.
Surface and interior assignments are, of course, a

type of tertiary structural information. Further, the
heuristics that examine “down” an alignment to
extract this information work without the need to
have any secondary structural model at all. The
heuristics can therefore provide the information
needed to resolve the chicken-or-egg paradox.
To illustrate this, we need to assign surface and

interior positions more fully for the segment of
protein kinase between the two “parses” (the gap and
the turn) in Figure 22. The reader can then use this
tertiary structural information to make his/her own
assignment of secondary structure to this region. One
can then proceed to Figure 23, which shows a
Schiffer-Edmundson helical wheel that provides a
diagram showing the relative positions in space of
the surface and interior positions.67

The helical wheel suggests that the segment be-
tween the parses forms an R helix; this is the only
conformation that places the side chain at position
131 on the inside, 132 on the surface, 133 on the
surface, and so on. This approach to using tertiary
structural information to assign secondary structure
proves to be rather general; a 3.6 residue pattern of
surface and interior residues nearly always indicates
a surface R helix (see below). Similarly, alternating
periodicity in interior and surface assignments should
indicate a â strand, while four or more consecutive
surface positions should indicate a surface turn or
coil.15,245

This approach for predicting secondary structure
is, of course, analogous to the approach suggested
many years ago by Schiffer and Edmundson67 and
Lim.120 In this classic work, however, side chain
hydrophilicity and hydrophobicity were used as in-
dicators of surface and interior position, respectively.
Side-chain hydrophilicity and hydrophobicity are
good, but certainly not excellent, indicators, of surface
and interior positions; as discussed above, natural
proteins will occasionally place hydrophobic residues
on the surface and hydrophilic residues inside, if only
to destabilize the protein. This limits the reliability
of secondary structure assignments made using the
classical approach. The analysis of non-Markovian
substitution of amino acids during divergent evolu-
tion provides a more reliable indicator of surface and
interior position and makes the approach workable.
Even given perfect interior and surface assign-

ments, however, it is clear that this method works
best for secondary structural elements that lie on the
surface. Secondary structural elements that lie
entirely within the fold of a globular protein are more
difficult to assign using this strategy. Empirically,
short (3-7 positions) segments of internal positions
between parses are generally interior â strands.91 A
longer segment (eight or more positions) that is
entirely interior could be a long interior strand, two
or more internal strands where a parse is not
indicated, or an internal helix. Without surface
assignments interspersing the interior segments in
a defined pattern, it is difficult to distinguish between
these.
Further, distinguishing short (1-3 positions) â

strands that lie on the surface from surface coils
should prove difficult. Because consecutive side
chains in a â strand alternate “in-out” in the
structure, short surface strands might be indicated
by “surface-interior-surface” assignments. How-
ever, such assignments are also expected as part of
surface coils, making the interior and surface assign-
ments too few to make a statistically reliable case
favoring one particular secondary structure over
another.
How good (or bad) are such approaches to assigning

secondary structure? The helix that the reader has
“predicted” for the segment of protein kinase in
Figure 22 was in fact part of a bona fide prediction
of secondary structure for the protein kinase family.91
The helix was found in the subsequently determined
experimental structure. Indeed, the crystallogra-
phers pointed out that overall, the prediction was
“remarkably accurate, particularly for the small

Figure 23. Schiffer-Edmundson67 helical wheel showing
3.6-residue periodicity in surface and interior assignments
of the protein kinase segment presented first in Figure 11.
This helix was predicted as part of a bona fide prediction
of the secondary and supersecondary structure of the
protein kinase family.91
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lobe”.247 Subsequent reviewers noted that the protein
kinase prediction was much better than that achieved
by standard methods,59 while others commented that
the prediction was a “spectacular achievement” that
might “come to be recognized as a major break-
through”.61
To answer this question in a way that is convincing

to experimental and computational biochemists alike,
transparent tools must be used to make more bona
fide predictions. We therefore turn to examples of
transparent bona fide predictions of secondary struc-
ture based on evolutionary analyses.

VI. Transparent Bona Fide Prediction as a Tool
for Developing Secondary Structure Prediction
Methods
Bona fide predictions are those made and an-

nounced before experimental knowledge of a struc-
ture is available. They are different from blind
predictions, which are made without the predictor
having knowledge of the experimental structure that
is available to others, and retrodictions, which are
made with the information concerning the correct
answer available and known to the predictor. The
literature generally refers to all three as “predic-
tions”. Because of the very different roles these three
different processes have played in the development
of the field, it is important to maintain the distinction
with some rigor.
While bona fide prediction was recognized very

early as a useful tool in the field, it was infrequently
used in the 1980s, either as a method for developing
or as a method for testing new prediction tools.
Indeed, the resurrection in the late 1980s of bona fide
predictions as a general tool for developing and
testing methods was criticized, at times harshly.
Some scientists asserted that tools developed through
bona fide predictions could not be subjected to rigor-
ous testing.176 Others argued that transparent meth-
ods are intrinsically not reproducible.65 Still others
argued that bona fide predictions, because they were
made one at a time, could never be made in sufficient
number to permit a statistically valid test of a
method. Still others rejected bona fide predictions
as simply being unscientific. These issues have been
discussed in detail elsewhere.210,248 Even today,
despite the evident fact that bona fide predictions
have been an important force driving both develop-
ment and testing of prediction methods, many still
have reservations.249
To understand the importance of bona fide predic-

tions, we must consider briefly how prediction tools
are developed in their absence. Tools for predicting
the conformation of proteins invariably include at
least some parameters derived from experimental
data. To avoid having those parameters biased to
reproduce a specific test set, most computational
biochemists divide available data into two sets, a
development set to generate the parameters and a
test set to evaluate the parameterized tool. A process
of “cross validation”, where the elements in the
development data set and the test data set are
permuted, is often used as well.
As important as this procedure is, it does not

guarantee an objective test of a parameterized theo-

retical tool, as appreciated in other areas of theoreti-
cal chemistry.250 Various mechanisms allow the test
set to influence the parameters derived from the
development set even when the development set and
test set are different. Most simply, knowledge of the
correct “answer” from the test set determines when
parameterization ends. Also, knowledge of the cor-
rect “answer” determines which papers are accepted
for publication and which ones are rejected. As a
consequence, a parameterized method that reaches
the published literature will perform better on aver-
age when evaluated against the test set than when
evaluated against new structures. This is expected
even if the test set is explicitly excluded from the data
used for the parameterization.
This bias cannot be avoided as long as knowledge

of the correct structure can intervene at any time
between the time the prediction is made and the time
the prediction is announced. The impact of the bias
can, however, be minimized by combining retrodictive
tests of prediction tools with tests that make bona
fide predictions, those announced before experimen-
tal data are known. This procedure is well known
in protein chemistry. It was used, for example, by
Georg Schulz (for adenylate kinase) and Brian Mat-
thews (for T4 phage lysozyme) in two well-known
prediction “contests” in the 1970s.54,55 In a bona fide
prediction, knowledge of a specific test case cannot
possibly influence the parameterization of the predic-
tion tool. Nor can it filter the prediction results,
favoring publication of successful predictions and
removing unsuccessful predictions. The experimen-
tal biochemist is therefore more likely to credit a
published bona fide prediction than a retrodiction.
One disadvantage is that bona fide predictions must
be made and tested one at a time.
Further, a bona fide prediction is typically made

in a different way from a retrodiction. First, it is
generally made singly, for a single protein; retrodic-
tions are generally made against a database of
structures. This means that the scientist making the
prediction encounters molecular structure as a chem-
ist, rather than as a statistician. A single structure
can be examined individually; mistakes in the pre-
diction can be discussed individually in terms of real
atoms and bonds. The audience for a Chemical
Review has little difficulty appreciating the value of
the approach to developing chemical theory. Even
those who are not chemists, however, can understand
how the results are different.
Further, a bona fide prediction is made with a

sense of urgency and focus that does not normally
characterize retrodictions. Mistakes in a bona fide
prediction are obvious, specific, and, in many ways,
personal, not buried in the anonymity of a three-state
score for a set of proteins. This brings a certain focus
to a prediction exercise that is not present in non-
predictive work, as recent prediction projects have
indicated. This again forces the predictor to encoun-
ter the molecule as an individual, to search, at times
frantically with a deadline, for new ideas and new
approaches that are fundamentally chemical.
This ultimately leads to the strongest advantage

of bona fide predictions: they allow transparent tools
to be developed more freely. As with the develop-
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ment of other transparent theories of conformation
in chemistry, the development of prediction tools from
an understanding of molecular evolution required
human involvement. Human involvement creates a
problem, as it does throughout science. It would be
very unusual indeed if the humans involved in the
enterprise could separate entirely their understand-
ing of theory, the development of prediction tools, and
their hopes for success, and keep these from influenc-
ing their judgement about their own work. As any
of those involved in chemistry can attest, it is always
easy to explain experimental results post hoc, re-
gardless of what these results are.
Bona fide prediction has proven to be a useful tool

for overcoming these problems. By making and
announcing a prediction before it is known whether
the prediction is correct, the predictor is free to
hypothesize, speculate, or even guess as to why the
prediction worked when it did, and why it failed when
it did. In some circles, this may be regarded as
“excuse making” and was suggested to be such by one
referee of this review. This process is, however, most
appropriately characterized as “learning” and, there-
fore, an essential step in improving prediction tools.
In one sense, prediction “contests” are critical to

bona fide prediction strategies, as they allow a
substantial number of protein targets to be as-
sembled at one time in one place. Otherwise, predic-
tion comparisons must be made one at a time.90
Their disadvantage is sociological; they represent the
prediction exercise as a competition between indi-
viduals rather than as the learning exercise that it
could (and should) be. This makes the “score” more
important than the “analysis”, which in turn is not
the optimum use of the exercise. The organizers of
the CASP1 project were especially helpful in directing
the discussion in this way, encouraging presentations
to explain what went wrong, what went right, and
why. To contribute to this trend, we refer to predic-
tion “projects” rather than “contests”.
We attempt to review here every example of a

transparent bona fide prediction based on evolution-
ary analyses that does not rely on the identification
of a homolog whose structure is already solved
experimentally. In practice, this goal is not easily
achieved. First, many predictions are “joint”, com-
bining transparent and nontransparent tools (for
example, where a neural network has been used to
assist in the prediction). Neural networks based on
multiple sequence alignments have come in many
respects to reproduce transparent prediction meth-
ods, often making the same mistakes as these (see
below). Therefore, such “joint” predictions have been
included here where the “transparent” component
was significant.
Further, many a priori prediction efforts have

generated a secondary structure assignment that
immediately suggested that the protein folds in the
same overall structure as a protein whose structure
is known. The known structure has frequently been
used to construct a tertiary structure model for the
target protein following an approach that is similar
to the homology modeling discussed above. The use
of predicted secondary structures to establish “long-
distance” homologies is becoming frequent.92,251 Fur-

ther, the growth in the size of the protein crystallo-
graphic database suggests that the most common use
of secondary structure prediction tools will be to
identify long-distance homologs as a starting point
for modeling. We have included a secondary struc-
ture prediction here if the homology modeling was
dependent on a secondary structure prediction that
was made a priori, without knowledge of the ho-
molog.
Table 7 lists the predictions discussed here. For

those cases where the published literature contains
residue-by-residue assignments, and where subse-
quently determined crystal structures are available
for a member of the protein family being examined,
prediction and experimental secondary structures are
presented in figures associated with the discussion
of each.

A. Early Transparent Predictions and Their
Mistakes

The most interesting parts of a bona fide prediction
are their mistakes. These convey the insights, not
only into how prediction heuristics might be im-
proved, but also into protein structure and evolution.
Therefore, with apologies to the many individuals
who have made bona fide predictions using methods
that analyze patterns of conservation and variation
among homologous protein sequences, we focus on
the mistakes, and what was learned from these
mistakes as we review the bona fide predictions made
in the past 10 years.
Again, we must emphasize that a discussion of

errors is not an apologia. It is a learning exercise.
One of the great strengths of transparent prediction
tools coupled with bona fide prediction is that it
facilitates, indeed encourages, what has come to be
called post mortem analyses of mistakes made by
predictions. The predictors gather around the pre-
diction and discuss the mistakes, ask what went
wrong, and propose ways in which the mistakes
might have been avoided. This is, of course, a
common exercise in the experimental sciences, where
it is viewed as a way of improving methods, models,
and theories.

Table 7. Some Predictions Made by Transparent
Analysis of Multiple Sequences

protein kinase
Src homology 2 domain
Src homology 3 domain
MoFe nitrogenase
hemorrhagic metalloproteinase
protein tyrosine phosphatase
Pleckstrin homology domain
Von Willebrand factor
proteasome
isopenicillin N synthase
protein serine phosphatase
factor XIIIa
6-phospho-â-galactosidase
synaptotagmin
cyclin
heat shock protein 90 (HSP90)
NK lysin
calponin
fibrinogen
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1. Protein Kinases (Catalytic Domains)
While not the first bona fide prediction to be made

with tools that transparently analyzed patterns of
variation and conservation within homologous pro-
tein sequences,15 the protein kinase prediction was
the first to be tested by a subsequently determined

crystal structure (Figure 24).59,91,247 The protein
kinase prediction illustrated several points. First, it
illustrated how surface and interior assignments can
be joined with parsing assignments to identify most
of the important secondary structural elements in the
fold, especially surface helices and internal â strands.

Figure 24. Sequences, experimental secondary structure, prediction, and neural network retrodictions for the protein
kinase family.45 The inconsistencies of the retrodictions obtained from the PHD neural network are especially noteworthy.
Key: E, â strand; H, R helix; the interior helix is underlined; 1, cAMP-dependent protein kinase (mouse); 2, protein kinase
C (ox); 3, protein kinase type II (rat); 4, protein kinase CDR1, S. pombe); 5, CDC28-cdc 2 protein kinase (S. pombe); 6 CDC
Protein 7 (S. cerevisiae); 7, Human Raf protooncogene kinase.
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Further, the predicted secondary structure proved
to be sufficiently accurate that, when combined with
assignments of positions near the active site and
some covariation analysis, an antiparallel â sheet at
the center of the first domain was correctly sur-
mised.59,91,247 The crystal structure also confirmed
that the covariation analysis obtained by inspecting
homologous sequences indeed reflected real contacts
between the relevant residues in the folded structure.
Here, the Markov model broke down at positions
distant in the sequence in a way that was useful to
identify packing.91 This is, we believe, one of the first
times that the general nature of a tertiary fold has
been correctly predicted in a fully a priori sense
without an explicit model of a fold drawn from a
crystallographic database and without exploiting
circular dichroism data.
Within the context of classical evolution-based

methods discussed above, protein kinase provides an
example as well. Predicting the antiparallel â sheet
required special confidence in the secondary structure
prediction, as it contradicted the conjecture that a
parallel sheet lay at the core of the first domain of
the protein kinase structure. Many groups applied
the homology modeling, joint prediction methods, and
knowledge-based techniques outlined above to sup-
port this conjecture.252-256 This conjecture was based
in part on a conserved sequence motif, Gly-Xxx-Gly-
Xxx-Xxx-Gly, found in many kinases and dinucleotide
binding domains, where it is part of a parallel sheet
in an R-â fold. This conjecture was wrong. The
many predictions of the structure of protein kinase
are not included in Figure 24 because they cannot
be coherently aligned with the correct structure.
Nevertheless, this may be the first case where a
transparent secondary structure prediction overrode
an assignment based on sequence motifs.257

The mistaken assignments in the prediction are
especially instructive, however. The most serious
mistake was the misassignment of an internal helix
between positions 225 and 240 as a strand (Figure
24). Such misassignments are expected from an
approach that assigns secondary structure based on
patterns in surface and interior assignments (see
above). Every position in the 226-240 segment was
assigned to the interior of the protein kinase struc-
ture (Figure 25). The assignments were correct. But
because the helix was entirely buried, no 3.6 residue
pattern of periodicity in surface and interior assign-
ments indicated a helical geometry. The mistake had

a double impact. Not only was the internal helix
missed, but the misassignment of this core secondary
structural element prevented the construction of a
tertiary structural model for the second domain in
the protein.
Accordingly, efforts have been devoted to develop-

ing tools to distinguish internal helices from internal
strands. The simplest heuristic is, of course, the
length of the internal segment, where long internal
stretches are marked as possible internal helices.
When the internal helices pass near an active site,
3.6-residue periodicity of active-site assignments is
also observed. Using these tools, an internal helix
was correctly predicted in the hemorrhagic metallo-
proteinase family (Figure 15);90 another has been
predicted in the structure of the serine/threonine
protein phosphatases (see below).96 Very often, in-
terior helices can be identified through efforts to build
a supersecondary structure from a set of predicted
secondary structural units in the problematic region.
This constitutes a “refinement” of secondary struc-
tural units in light of additional tertiary structural
information extracted from the multiple alignment.
The secondary structure assignments near the

active site (segment 177-193, Figure 24) and the
autophosphorylation site in protein kinase (segment
198-212, Figure 24) were also problematic. In the
first region, the experimental structure identified two
â strands, while the prediction assigned one long
strand with a break at position 182. In the second,
the prediction placed a long â strand (positions 201-
212) with breaks between positions 203-204 and
208-209. The crystallographers assigned no defined
secondary structure in this region. The first part of
the segment forms an extended structure, while the
second and third segments are best viewed as coils.
Regions near an active or regulatory site play

unique functional roles in a polypeptide chain. They
are the least likely to conform to expectations based
on an analysis of protein sequences overall. Markov
rules fail severely in these regions. However, altered
patterns of variation and conservation in these
regions generally reflect catalytic function rather
than secondary structure. Thus, predicting second-
ary structure in these regions is the most difficult
for any modeling tool. However, identification of non-
Markov behavior in divergent evolution can identify
active-site regions (see below), and prediction tools
can be designed to alert the biochemist to the
existence of the problematic region.
Further, the difficulties in predicting the secondary

structure of segment 198-212 in protein kinase
prompted efforts to improve heuristics to parse, or
divide, the multiple alignment into units that form
independent secondary structures. One of the most
powerful tools to have resulted from this effort are
parsing strings, consecutive combinations of Pro, Gly,
Ser, Asp, and Asn in a polypeptide that break
secondary structures with a high probability, as
discussed above.73 These tools became part of a
growing set of heuristics for assigning secondary
structures.
Misassignments were also made in regions where

secondary structure in the protein kinase homologs
has diverged: at the beginning of the multiple

Figure 25. Interior helix in protein kinase, showing the
absence of 3.6-residue patterns that might indicate a
consensus secondary structure.
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alignment (Figure 24), at the end of the multiple
alignment, and in a short segment between positions
050 and 057. At the beginning of the alignment, the
experimental structure for a cAMP-dependent pro-
tein kinase assigned an edge strand; the prediction
proposed a coil. At the end of the alignment, the
divergence was so severe that the multiple alignment
misplaced a gap and, therefore, missed a noncore
helix assigned in the crystal structure. The model
overpredicted a strand at positions 307-312; the
experimental structure places a coil in this region.
Finally, the cAMP-dependent kinases contain a short
helix at positions 050-056 not present in other
kinases. Because of this gap, the consensus model
assigned a coil in this region. In the refinement
process, however, the conformation of the cAMP-
dependent kinase subfamily was examined sepa-
rately, and the possibility of a helix in this region in
this particular subfamily was noted.91
As noted above, misassignments of secondary

structure in regions where secondary structure has
diverged rarely present serious obstacles in the use
of a predicted secondary structural model. Thus, the
last three misassignments are not serious, in contrast
to the misassignment of the internal helix.

2. The â Subunit of MoFe Nitrogenase

The MoFe nitrogenase challenge was issued just
days before a crystal structure appeared in print. The
prediction was therefore unrefined;73 the multiple
alignments generated by the automated computer
tool DARWIN258 were not separately adjusted, sec-
ondary structural elements were not evaluated within
possible supersecondary structural models, and prob-

lematic assignments near the active site were not
addressed. Even so, long surface helices were readily
identified.73,259 Ten surface helices were predicted
(Figure 26); all were found in the experimental
structure.
The prediction could not, of course, have supported

tertiary structural modeling, as it contained too many
serious mistakes. Indeed, the MoFe nitrogenase
prediction provided examples of five different ways
where patterns in surface and interior assignments
might be unreliable indicators of secondary structure
(Table 8). Thus, the mistakes proved to be more
instructive than the successes.
Two classes of misassignments were clearly not

serious. The first set, accounting for six “misassign-
ments” when comparing the predicted and experi-
mental structures, arose from differing experimental
definitions of secondary structure. The details are
instructive. The “underpredicted” strands at posi-
tions 112-118, 186-194, and 335-344 and the
“underpredicted” helices at positions 280-283 and
523-526, all listed as standard secondary structural
units in the paper where the crystal structure was
published,259 are not assigned as such by DSSP,66 one
of the standard tools discussed above for automati-
cally assigning secondary structures to coordinate
data. All of the strands with uncertain experimental
secondary structure assignments are at the edge of
their respective sheets, and both of the controversial
helices contain only four residues. The “overpre-
dicted” strand (positions 529-532), missing in the
published structure, was later assigned as a strand
in the databank version of the structure. Thus, each
of these misassignments provides an illustration of
the discussion of scoring methods above; different

Table 8. Types of Mistakes in the Prediction for the MoFe Nitrogenase Familya

position mistakes comments

serious mistakes
internal helix
076-080 mistaken strand for helix internal helix

bad multiple alignment
147-154 underpredicted strand bad parse at 148-149: misplaced gap or sequence error in the database
164-174 underpredicted helix helix shortened by a badly placed gap; weak R predicted
370-374 helix too short bad alignment and misplaced gap
392-395 mistaken strand for helix bad alignment leading to bad parse
434-451 underpredicted helix bad alignment
461-466 underpredicted strand bad alignment
491-504 underpredicted helix bad alignment

active site
068-072 overpredicted strand active site
094-107 underpredicted helix a weak helix assignment was made, active site
122-125 mistaken strand for helix active site
155-160 mistaken strand for helix active site helix (helix bundle with 122-125 and two

from R-subunit)
less serious mistakes
various definitions of secondary structure type
112-118 underpredicted strand DSSP assigns a 2 residue edge strand; parsing strings limit â to 114-115
186-194 underpredicted strand DSSP also does not assign a strand here
280-283 underpredicted helix DSSP does not assign a helix here, but rather a turn
335-344 underpredicted strand DSSP does not assign a strand here; an edge strand in the publication
523-526 underpredicted helix DSSP does not assign a helix here
529-532 overpredicted strand strand assigned in the databank, but not the published version of the

structure
short secondary structural element with mistaken surface/interior assignments
272-278 underpredicted strand incorrect surface assignment at position 274
521-523 overpredicted strand incorrect interior assignments

a DSSP indicates an assignment made by the “define secondary structure of proteins” program.66 See Figure 26 to obtain a
more comprehensive view of the quality of the predictions.
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ways of looking at the same experimental structure
yield different secondary structure assignments, and

this fact must be considered in analyzing each
prediction.

Figure 26. Representative sequence, experimental secondary structure,259 and secondary structure prediction73 for the
MoFe nitrogenase family. Key: E, â strand; H, R helix; T, turn; C, coil; G, 310 helix; S, bond; B, bridge. Underlined segments
in the sequence are residues near the active site. Top numbering is the alignment number; bottom numbering is the
numbers in the experimentally determined crystal structure. Especially noteworthy are the differences in secondary
structural assignments obtained by the crystallographers and by application of the program DSSP66 to the coordinates
provided by the crystallographers.
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Misassignments in noncore regions account for two
additional mistakes in the prediction. Two short
noncore segments (positions 272-278 and 521-523)
were underassigned and overassigned, respectively,
because of the small number of surface and interior
assignments applying to the segments overall. Here,
the seriousness of the misassignments is less easily
determined. It will be interesting to see if these
assignments are conserved in homologous nitroge-
nase proteins.
A third class of misassignments arose from a

failure to align gaps with other gaps in the unrefined
multiple alignment. Together with the substantial
sequence divergence in the MoFe nitrogenase family,
the multiple alignment was poor. Positions 215 and
240 illustrate this (see, for example, the floating Thr
220). Mistaken gap insertions obliterated three
helices, at positions 164-174, 434-451, and 491-
504 (Figure 26), and three strands, at positions 147-
154, 335-344, and 461-466. Further, a â strand was
overpredicted at alignment positions 392-396 when
a misplaced gap in the alignment disrupted a helix
that would otherwise have been propagated to in-
clude this region. These are serious mistakes. How-
ever, the prescription for avoiding them is clear; the
multiple alignment must be refined. This conclusion
has again been noted very recently.179

Two classes of misassignments are more serious
and more difficult to avoid. First, an internal helix
was misassigned as an internal strand (positions
076-080), as in protein kinase (see above), for much
the same reasons.
Second, the MoFe nitrogenase has an extended

active site with two metal binding sites. Cys 71, Cys
96, Cys 155, and Ser 195 serve as cluster ligands,
Pro 73, Phe 100, Tyr 99, Met 156, and Phe 196 form
a hydrophobic environment around the cluster, and
Gly 95, Gln 94, and Thr 154 are conserved hydro-
philic amino acids in the vicinity of the cluster (all
underlined in Figure 26).259 Further, two short
helices (alignment positions 121-126 and 155-160)
are oriented in parallel from one metal cluster toward
the surface, forming a four helix bundle with two
helices from the other subunit. The 4Fe:4S cluster
binds on the top surface of these helices. As noted
above, secondary structure is especially difficult to
assign in active-site regions, and these regions con-
tained virtually all of the instances where the predic-
tion confused helices and strands.
The mistakes made in the MoFe nitrogenase pre-

diction suggested a particular hierarchical procedure
for structure prediction to avoid similar mistakes.
The procedure must start with tertiary structural
assignments, parses, and active-site assignments.
These are jointly used to assign secondary structure
to “easy” regions first, where the multiple alignment
is good, which are distant from the active site, and
where periodicity in the assignments is obvious.
Where the multiple alignment is evidently bad, it
must be refined, possibly with the help of secondary
structural assignments made for subfamilies of the
evolutionary tree. Two potentially problematic re-
gions then remain: internal helices and active-site
regions. The first are identified by a stretch of
continuous interior assignments. The second are

identified by their distinctive conservation of func-
tionalized amino acids. Efforts to improve the pre-
diction tools must focus on these regions.

3. The Hemorrhagic Metalloproteases
The prediction effort that for the first time com-

pared on an equal footing consensus classical predic-
tion tools with transparent methods and the (then)
new PHD neural network was discussed above (Fig-
ure 15). The transparent prediction performed sig-
nificantly, if modestly better than the PHD tool, while
the PHD tool performed considerably better than
both the classical GOR and classical Chou-Fasman
tools averaged over the multiple sequence alignment.
Further, the transparent prediction avoided one of
the principal errors noted above; an internal helix
was correctly assigned to positions 133-145.
The remaining misassignments in the transparent

prediction included an overprediction of a strand at
positions 064-069, the underprediction of an edge
strand at positions 108-112, the overprediction of a
strand at positions 148-152, the overprediction of a
strand at positions 169-172, and the misassignment
of the final two-residue element of the â meander at
positions 176-177. In several cases, these problems
can be traced directly toward a problem of definition.
For example, the 169-172 strand, although not
technically a â strand, does form an extended struc-
ture. Several residues in strands in the â meander
at positions 176-177, missed in the prediction, are
also missed in some experimental secondary struc-
tural assignments (Figure 15). The edge strand at
positions 108-112 is not a core structure. The
overprediction at positions 148-152 is near the active
site and appears to be an extended structure as well.
Thus, none of the misassignments would seem to be
fatal to a tertiary structure modeling effort. Indeed,
the antiparallel nature of the central â sheet might
have been identified.

B. Predicting Small Domains
Intracellular signal transduction is mediated in

higher cells by small domains, usually containing
approximately 100 amino acids, that interact with
other domains. The rapid emergence of experimental
structures (both by crystallography and NMR) for
these offered an opportunity to test many of the
prediction methods. As illustrated below, these
demonstrated much of the power of transparent
prediction tools.

1. The Src Homology 3 (SH3) Domain
The Src homology 3 (SH3) domain, an independent

unit found in many proteins involved in intracellular
signal transduction, was an unrefined prediction.260
Because the SH3 domain family had undergone
considerable sequence divergence, the prediction was
in fact three predictions, made for each of the major
subfamilies of the SH3 domain. Six experimental
structures later became available for various SH3
domains. These include two structures solved by
crystallographic methods,85,261 and four solved by
NMR methods.71,76,86,87
The prediction proved to be controversial, as indi-

cated by the difficulty various commentators have
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had in agreeing upon its three-state score (Table 9).
Rost and Sander proposed a three state Q3 score of
56%.211 Robson and Garnier proposed a score of
46%.65 Barton et al. calculated Q3 scores ranging
from 42% to 58%, after disregarding one experimen-
tal structure.74 This divergence has more to say
about the scoring methods than about the prediction
itself; hence, the SH3 domain served as an excellent
example for our discussion of scoring methods.
Figure 27 presents the transparent predictions for

the SH3 domain with retrodictions made by the 1993
PHD neural network, the GOR program found in the
GCG package, and the COMBINE program.262 The
transparent prediction contains two problematic
aspects, one serious and the other less so. First, a
helix is predicted near the middle of the domain. The
predicted helix obliterates an important â strand
present in all of the structures. This misassignment
illustrates the difficulty in obtaining a statistically
significant pattern of surface and interior assign-
ments in a short strand. In the SH3 domain, the
helix was assigned because positions 27, 39, and 30

were placed on the inside of the folded structure
while positions 26, 28, 31, and 32 were placed on the
surface (Figure 27). In the spectrin crystal structure,
the actual side-chain exposures of residues 30 and
28 are reversed. Nonetheless, it is intriguing to note
that a helix does appear in this region in some
members of the SH3 domain family.
The second problematic region is the shift in the

placement of the final â strand. This can be at-
tributed in part to divergence in sequence and a
resulting bad alignment. The final strands in the
experimental structures fall in a region where DAR-
WIN does not consider the overall alignment to be
significant.
The remaining problem is difficulties in identifying

by DSSP the â hairpin in the first part of the
structure. Visual inspection of the experimental
structures makes it certain that the structure is
there. Some automated tools for assigning secondary
structure to coordinate data find it; others do not.
Because the protein is small, this creates large
variation in the Q3 scores.

Figure 27. Representative sequences, experimental secondary structures,71,76,85-87 predictions, and retrodictions for the
Src homology 3 (SH3) domain family and subfamilies. Key: E, â strand; H, R helix; T, turn; C, coil; 3, 310 helix. The bona
fide predictions260 marked a, b, and c are for three separate subfamilies of the SH3 domain. The prediction marked d is for
a specific alignment.263 The differences in the output of the PHD neural network208 tested blind with different homologs
are especially noteworthy, as is the poor quality of the prediction made by a consensus GOR approach. It should be noted
that the GOR tool used is implemented in the GCG package107 and may differ from the implementation proposed by Garnier
et al.105
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In Heidelberg, Musacchio et al.made a transparent
prediction for part of the secondary structure of the
SH3 domain using an analysis of conservation and
variation within the protein family.263 First, they
constructed a multiple alignment for the family.
They then positioned three strands in the SH3
domain, and surmised that the protein would form
five or six strands overall. The three predicted
strands are indeed found in the experimental struc-
ture (Figure 27).

2. The Src Homology 2 (SH2) Domain
Two bona fide predictions of the Src homology 2

(SH2) domain were published, one by Blundell’s
group,264 the other by Barton’s group.265 Both predic-
tions are essentially perfect (Figure 28).266 The
strand missed is an edge strand, and the underpre-
diction is not serious to an overall perception of the
fold.
Missed strand 6 lies in a region where substantial

divergence of sequence has taken place, including
some gapping, implying that it is not present in all
of the SH2 domain homologs. Not surprisingly, it is
also an edge strand. Thus, all core secondary struc-
tural elements were correctly identified, no elements

were predicted that were not later found to be part
of the core fold, and no region of helix was misas-
signed as a strand (or vice versa).

3. The Pleckstrin Homology Domain

Two bona fide predictions were made for the
pleckstrin homology domain,267,268 another domain
putatively involved in signal transduction and identi-
fied by sequence similarities in a variety of pro-
teins.269,270 The predictions are compared with two
experimental structures in Figure 29;271,272 the com-
parison was reviewed by Russell and Sternberg.60 In
both cases, the sequence was first parsed, and
secondary structure was assigned to separate ele-
ments. A single helix and six or seven strands were
predicted in each case. A subsequently determined
experimental structure showed that the core ele-
ments were correctly predicted in terms of number,
type, and location. Within the pleckstrin homology
domain family, considerable divergence of secondary
structure is seen; indeed, the residue-by-residue
three-state correspondence between any two se-
quences can be as low as 73%.271,272 Both predictions
achieve this three-state score and differ from a
consensus model only in the precise start and end
points of the helices (something that depends on the
crystallographic assignments in any case) and in
overlooking a short helix found in only one branch
of the pleckstrin homology domain family tree. Thus,
these predictions are essentially perfect as consensus
models.
Russell and Sternberg examined the possibility of

predicting the pleckstrin homology domain structure
using a consensus GOR method.60 In this particular
case, the outcome was considerably worse than the
published transparent predictions. The PHD neural
network did considerably better than the consensus
GOR tool, however, replicating the nearly perfect
performance of the transparent methods.

4. The Cyclin Family

Two independent predictions of secondary struc-
ture were made for the cyclins.204,273 These are shown
in Figure 30, together with experimental assign-
ments of secondary structure.274 The two predictions
are quite similar, and correspond well with the
experimental structure, except for a pair of strands

Figure 28. Representative sequence, bona fide consensus prediction, and experimental secondary structure for the Src
homology 2 (SH2) domain. Experimental structure 1 is from the paper describing Brookhaven database PDB 1sha (ref
266); experimental 2, for Swiss Port (P00524, SRC RSVSR) tyrosine-protein kinase transforming protein Src (EC 2.7.1.112)
(P60-SRC), from the Rous sarcoma virus. Key: E, â strand; H, R helix; t, turn.

Table 9. What is the Correct Three-State Score for
the SH3 Domain Prediction?a

experimental
structure
used as
reference correct incorrect

seriously
incorrect

total
residues

three-state
score
(in %)

C csrc 43 16 5 64 67
PI3K 52 22 5 79 66
FYN-1 37 21 6 64 58
FYN-2 38 24 3 65 58
H PLC 34 24 6 64 53
C spec 32 24 6 62 52

a All numbers represent residues, except the percentage
three-state score. Correct assignments indicate residues as-
signed in the experimental structure as part of helices paired
with residues predicted to lie in helices, plus residues assigned
in the experimental structure as part of strands paired with
residues predicted to lie in strands, plus residues assigned in
the experimental structure as part of coils paired with residues
predicted to lie in coils. The 310 helices are treated as coils.
Seriously incorrect assignments are those that mistake resi-
dues assigned to a helix for those predicted to be part of a
strand and vice versa. The calculated scores for the same
consensus prediction range from 52 to 67%, depending only
on which member of the protein family is chosen as the
reference structure.
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mispredicted in one but not in the other. This
misprediction illustrates the interplay of experimen-
tal data and prediction.
The cyclin structure as solved shows an internal

repeat, where two halves have equivalent chain
topology built from five helices. This internal repeat
had been detected on the basis of weak sequence
similarities before the experimental structure was
solved.275 Bazan used this repeat in his secondary
structure prediction.
At the time that the predictions were made,

experimental results with deletion mutants were
available that suggested that a portion of the protein
could be deleted with only modest effect on func-
tion.276 These deletions would disrupt a portion of a
predicted internal helix, a disruption that would be
expected to have far greater impact on performance.
Bazan chose to ignore the experimental data

(mentioning nevertheless the problematic conclusions
that might be drawn from these experiments in light
of his model) and predicted a helix that extended
through the deletion. Gerloff and Cohen chose to
modify their prediction in light of the experimental
data. Interestingly, ignoring the experimental data
provided the better prediction. This is not the first
time that Bazan has used an analysis of aligned
homologous sequences to draw correct inferences that
contradicted conclusions presumed to be supported
by experiment.277

C. Predictions of Large Proteins
The results obtained from bona fide prediction

efforts for the SH2, SH3, and pleckstrin homology
domains, synaptotagmin (see below) and cyclin show
that transparent approaches to structure prediction
can reliably predict secondary structure over the
entire length of a protein. The bona fide nature of
these predictions makes this conclusion convincing
even to the most skeptical experimental biochemist.
Further, it is possible to venture that transparent
methods produce results that are superior to those
obtained using consensus classical prediction meth-
ods, at least for these domains. Finally, predicting
secondary structure is no longer a limiting step in

the modeling of tertiary structure for such domains.
Improved tools that help assemble tertiary structural
models from a set of predicted secondary structural
elements would be useful, as would be tools that
distinguish between alternative packings of predicted
secondary structural elements. These could be used
to retrospectively evaluate alternative secondary
structure models, the preferred model being the one
that provides the most convincing tertiary structural
modeling. This is currently done routinely by hand.
Were the second class of tools available, it is conceiv-
able that both the pleckstrin homology domain (see
below) and cyclin structures could have been built
entirely de novo.
These small domains might be expected to be the

best targets for these tools, however. The polypeptide
chains form soluble single domain structures that are
ideal for modeling, the ratio of surface area to volume
is large, and many sequences are available in the
databases. Attention therefore returned to predicting
secondary structure in larger proteins. The experi-
ence discussed above with protein kinase, MoFe
nitrogenase, and the hemorrhagic metalloproteinases
showed that secondary structure can be accurately
predicted for many secondary structural elements of
such proteins using transparent methods. However,
experience also showed that certain types of second-
ary structural elements are difficult to identify:
internal helices, regions near the active site, edge
strands, and regions where the core fold is not
conserved (in decreasing order of seriousness).
“Perfection” in a secondary structural model is very

important. A single serious mistake in the assign-
ment of secondary structural elements normally
prevents modeling tertiary structure for an entire
domain. A “perfect” prediction is one that misassigns
no core helices as strands (or vice versa), misses no
core secondary structural elements, and misassigns
no noncore region in a way that obstructs modeling
of a tertiary structure.

1. Isopenicillin N Synthase

Isopenicillin N synthase lies within a family of
homologous proteins that includes enzymes involved

Figure 29. Representative sequences, bona fide consensus predictions, and experimental secondary structures271,272 for
the pleckstrin homology domain family. Key: E, â strand; H, R helix. Prediction 1 is from ref 267. Prediction 2 is from ref
268.
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in ethylene biosynthesis, oxidizing enzymes (fla-
vanone 3-â-hydroxylase, flavanone 3-dioxygenase,
hyoscyamine 6-dioxygenase), and anthocyanidin syn-
thases. Divergence in function often makes a predic-
tion challenging, as it implies difficulties in detecting
active-site residues. The prediction exercise was
rendered especially challenging by the substantial
divergence in sequence that is associated with the
divergence in function. A global consensus prediction

was made from separate predictions for three sub-
families of proteins. These are compared with an
experimental structure of isopenicillin N synthase
(Figure 31).278

A comparison of the predicted and experimental
secondary structure assignments identifies examples
of the misassignments discussed above. Least seri-
ous is the omission of noncore structures in a
consensus model. For example, the consensus pre-

Figure 30. Representative sequences, bona fide consensus prediction, and experimental secondary structure274 for the
cyclin family. Prediction 1 is adapted from ref 204. Prediction 2 is adapted from ref 273. Analysis is adapted in part from
appendix to ref 273. Key: E, â strand; H, R helix. In the prediction, “e” refers to a weakly predicted strand, while “E”
refers to a strongly predicted strand; “h” refers to a weakly predicted helix, while “H” refers to a strongly predicted helix;
??? indicates a region of unpredicted secondary structure for cyclin A. The underlined predicted segment of strand was
based on an interpretation of an experimental result involving deletion mutations (see text). The inference from the
experimental results proved to be incorrect. Subpredictions are for prediction 2.
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diction does not identify two segments that the
crystallographers assigned as helices (R7 and R8)
built from only three residues. Nor does it predict a
helical conformation for two segments that are as-
signed by the crystallographers as helices (R1 and
R5) built from only four residues. The prediction also
does not assign strand conformations to four seg-
ments assigned as â strands (â6, â7, â15, and â16)
built from only two residues. None of these second-
ary structural elements is important for the overall
fold, least of all R8, which comes in a region that is
a gap in many of the homologous proteins. Further,
it is likely that such short secondary structural
elements are not uniformly found by different ex-
perimental methods examining the same coordinates
(see above). For example, as a typical R helix
requires four residues before the first intrahelix
hydrogen bond can be formed, a helix built from only
three residues can be equally well described as a coil.
Therefore, these underpredictions have no impact on
the overall structural model. Further, two strands
(â10 and â11) form an external hairpin that is also
not a core element of the fold, and were mispredicted.
More serious, and therefore more interesting, are

the misassignments of secondary structure near
active-site residues. Four strands (â4, â8, â9, and
â13) were underpredicted because of their proximity
to a segment of the protein that was assigned to the
active site. Three of these are actually near the
active site; â4 is not. Normally, active-site segments
are identified more successfully. Here, the difficul-
ties in finding active-site residues can be directly
attributed to the enormous divergence in catalytic
function of members of the protein families, which
in turn implies that functionalized amino acids that
are normally conserved at active-site positions are
not conserved within the isopenicillin N synthase
superfamily.
Last, the prediction noted the difficulty in assign-

ing the segment comprising residues 246-260, which

it was noted could be built either from two â strands
or an internal helix. In reality, the segment forms
one strand and an internal helix (â12 and R9). The
prediction itself discussed this ambiguity and indi-
cated how it must be handled. When building a
tertiary structure model, it would be necessary to
model both alternative secondary structural assign-
ments in this region.
Thus, the prediction for isopenicillin N synthase

provides an excellent catalog of problems needing to
be solved, with an understanding of why they exist.
It was not, however, adequate as a starting point for
modeling tertiary structure.

2. Factor XIIIa

The Oxford group undertook a prediction of Factor
XIIIa in response to a challenge from the crystal-
lographers. The protein is very large (some 730
amino acids). An experimental structure recently
emerged,279 and the predicted and experimental
structures are compared in Figure 32. In indepen-
dent work, the Chou-Fasman method104 was also
applied in a routine fashion to a single protein
sequence in the family.280 The details of the predic-
tion are not available, but the secondary structural
model built from a single sequence evidently pre-
dicted considerably more helix than the consensus
model.
As with isopenicillin N synthase, the prediction

was good, if not outstanding. A large number of â
strands, 27 in all, were assigned correctly, with the
usual variation in length, but with remarkably little
shifting (Figure 32). Two additional helices were
correctly assigned. Many of the underpredictions
were not serious. For example, several short helices,
assigned in the experimental structure but not as-
signed in the prediction (at positions 59-63, 176-
178, 478-481, and 593-597), do not appear to be
critical to the fold.

Figure 31. Representative sequences, bona fide consensus prediction,248 and experimental secondary structure278 for the
isopenicillin N synthase superfamily. Key: E, â strand; H, R helix; t, turn; C, coil. In the prediction, “e” refers to weakly
predicted strand; E, strongly predicted strand; h, weakly predicted helix; H, strongly predicted helix. Predicted surface
and interior assignments are indicated by “s” and “i” above the sequences; “p” indicates parse; “a” indicates active site; ?
indicates uncertain prediction. The crystal structure is for enzyme i from Aspergillus nidulans. Sequences are labeled as
follows: (a) isopenicillin N synthase from S. griseus; (b) (P12438) isopenicillin N synthase from S. lipmanii; (c) (P08703)
isopenicillin N synthase from P. chrysogenum; (d) (P10621) isopenicillin N synthase from S. clavuligerus; (e) (P18286)
isopenicillin N synthase from S. jumonjinensis; (f) (X57310) isopenicillin N synthase from N. lactamdurans; (g) (P16020)
isopenicillin N synthase from Flavobacterium sp.; (h) (P05189) isopenicillin N synthase from C. acremonium; (i) (P05326)
isopenicillin N synthase from A. nidulans.
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The most informative aspects of the prediction are
again the mistakes. Most prominent are several
serious misassignments of helices as strands, includ-
ing the helices at positions 198-207, 234-244, 255-
265, 314-325, 415-419, and 428-436. Further,
toward the carboxyl end, a strand (positions 617-
626) is misassigned as a helix, and some secondary
structural elements between residues 580 and 600
are missed or shifted.
Some of the mistakes are very interesting. For

example, helix 198-207 is missed because positions
196-202 were all strongly assigned to the surface,
and position 203 holds a conserved Glu (E), which
might also be assigned to the surface, except for the
fact that it is so highly conserved. The following
three interior positions (204-206) are canonically
assigned as a strand. The helix formed by this
segment is not reflected in any 3.6 residue periodicity.
A part of the helix appears to be buried, while a part
appears to be fully exposed. Close inspection of the
experimental structure shows that this Glu forms a
salt bridge with Lys 467. This long-distance tertiary
contact undoubtedly has something to do with the
unusual behavior of this secondary structure segment
during divergent evolution.
Other mispredictions are rather surprising. For

example, helix 234-244 is found on the surface of
the protein. A clean 3.6-residue pattern of periodicity
is identified using surface and interior predictions
(such as those generated as outlined above)234 across
positions 232-239. This pattern extends to position
244 if a weak surface assignment at position 240 is
accepted. Thus, this helix would have been assigned
correctly had contemporary transparent prediction
methods been used. However, the joint prediction
method used by Barton allowed a misprediction made
by classical methods to outweigh a correct prediction
made by contemporary methods.
Several mispredictions reflect mistakes that are

commonly made by all methods. For example, the
helix between positions 255 and 265 is near an active
site, as is the helix between positions 314 and 325.
Both of these are mispredicted as strands. Finally,

helix 428-436 is an internal helix, also difficult to
find by transparent methods.
As an exercise in the learning curve, the Factor

XIIIa structure is a milestone. Some 30% larger than
the MoFe nitrogenase (see above), it is the largest
protein to have been modeled to date using evolu-
tionary information. Further, few proteins exist with
more than 1000 amino acids in a single polypeptide
chain. Thus, successful modeling of proteins of this
size will bring to a close an important phase in the
development of prediction methodology.

3. The von Willebrand Factor A Domain

The von Willebrand factor is a large glycoprotein
found in blood plasma, where mutant forms are
associated with bleeding disorders. Edwards and
Perkins applied unbiased GOR and Chou-Fasman
tools to each of 75 homologous protein sequences
within the family to obtain an average prediction.282
To resolve ambiguities in the averaging, the PHD and
SAPIENS programs17 were applied. The protein was
predicted to fold in an R-â conformation, with six â
strands identified. The crystallographic database
was then searched to find possible templates for
homology modeling. The R-â TIM barrel was not
considered, because too few strands were predicted,
while the six predicted strands were consistent with
a doubly wound â sheet. A search through the
crystallographic database found 38 proteins that have
a doubly wound R-â core. These were used as
threading targets for the predicted secondary struc-
ture. The GTP-binding domain of the ras protein was
found to give the best score using the THREAD159

and QSLAVE283 programs, and was used to model
the tertiary fold. The crystal structure of the protein
has now been published,284 and Figure 33 compares
it with the predicted structure.
The experimental structure of the von Willebrand

factor turned out to differ from that of ras only in
the orientation of two â strands. This template was
then used to search the database for proteins with
similar secondary structures (R-â). The ras-p21

Figure 32. Representative sequences, bona fide consensus prediction,281 and experimental secondary structure279 for the
blood coagulation factor XIIIa family. An “x” indicates a region that was assigned “A1” in the prediction. Numbers correspond
to residue numbers in the crystal structure. Key: E, â strand; H, R helix. In the prediction, “e” refers to a weakly predicted
strand, while “E” refers to a strongly predicted strand; “h” refers to a weakly predicted helix, while “H” refers to a strongly
predicted helix.
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came closest to the predicted pattern, and this was
used as a template for threading. An alignment with
the ras-p21 was then made. As with the prediction
for the cytokine receptor, the strand orientation was
not precisely as predicted, with an edge and an
internal strand swapped.284 However, a metal bind-
ing site was predicted.
Several interesting features of the errors are

instructive. For example, both the first helix and the
first strand were correctly predicted. In the align-
ment with ras-p21, however, both secondary struc-
tural elements were predicted to be disrupted by an
indel. This raised questions about the correlation
between the von Willebrand structure and the ras-
p21 structure. Further, helix 2 in the prediction is
found in the experimental structure as two helices.
Nevertheless, the overall packing was not affected
by this mistake, illustrating a degree of tolerance of
errors in noncore regions.

4. Protein Tyrosine Phosphatase
Livingstone and Barton applied methods similar

to those used with Factor XIII to construct a predic-
tion for the protein tyrosine phosphatase family.281
The crystallographers subsequently noted that the
prediction was very good when evaluated against
their experimental structure, in particular with
respect to the core secondary structural units.285
Figure 34 shows the predicted and experimental
structures. With the exception of a single â strand
assigned to a region that is helical (224-227), the
prediction is free of serious mistakes.

5. Protein Serine/Threonine Phosphatases
Both the Florida group and the Oxford group

performed evolutionary analyses of the protein serine/
threonine phosphatases.96,286 The predicted second-
ary structures, together with the experimental struc-
ture assigned to coordinates from calcineurin,287 are
shown in Figure 35. The Florida prediction identified
correctly every helix and strand in the core domain,

with the exception of a single region that passes near
the active site. The treatment of this active-site
region in the prediction was important. By the time
that this prediction was made, tools for identifying
active-site regions had been developed, and the
implications of an active-site region on the accuracy
of a secondary structure prediction were understood.
In the prediction paper, this ambiguity was presented
with the following discussion:96

“The helix assigned to segment (246-262) contains
a conserved tripeptide RxH that is plausibly (but not
definitely, see below) placed at the active site. The
segment displays convincing 3.6 residue periodicity
if residue 254 is assigned to the surface. To observe
this periodicity requires, however, assignment of a
conserved R (251) to the surface and a conserved H
(253) and a conserved G (259) to the inside. Further,
the DG element at positions (258-259) is a weak
parsing element. Thus, a second, weaker, assign-
ment separates this segment into two shorter ele-
ments separated by an active site coil. In tertiary
structure modelling, this alternative assignment
must be considered.”
In the experimental structure, two shorter strands,

separated by an active-site coil were observed (Figure
35). Thus, the prediction provided two alternative
secondary structure models, one entirely correct. This
underscores again the need to develop accurate tools
for evaluating alternative packings that might allow
selection between a small number of alternative
secondary structural models. Further, the example
provides another illustration of the difficulty in
predicting secondary structure near an active site.
Similar difficulties are seen at positions 071-074.

The experimental structure starts helix 3 in this
region. The Florida prediction, recognizing the active
site, did not. The Oxford group mispredicted this as
a strand. Again, the reason is that patterns of
conservation that reflect active sites mask patterns
that would normally be used to assign secondary
structure. From an analysis of the structure overall,

Figure 33. Representative sequences, bona fide consensus prediction,282 and experimental secondary structure284 for the
von Willebrand factor type A domain. Key: E, â strand; H, R helix; T, turn; C, coil. In the comparison of sequences, vertical
lines (|) indicate identical amino acids, exclamation points (!) indicate conservative substitution, colons (:) indicate less
conservative substitution; underscoring ( ) indicates insertion or deletion (indel). Prediction sequence is part of human
complement factor B (EC 3.4.21.47, P00751, CFAB HUMAN). The experimental sequence is the mouse cell surface
glycoprotein MAC-1 R subunit (P05555, ITAM MOUSE). The two proteins are 180 PAM units distant.
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the Florida group built a mechanistic model for the
phosphatase (see below) based on two active-site
metals. This required the identification of a larger
number of active-site functionality than would nor-
mally be found in an enzyme of this type.
As in the phospho-â-galactosidase prediction (see

below), the most significant mistakes identified by
comparison of the prediction with a crystal structure
for a single member of the family lay in the noncon-
served extra domain. In Figure 35, the divergence
of secondary structure is most obvious at positions
220-222. Here, the three residues assigned to a
strand in the protein whose crystal structure was
solved are missing in the alignment of almost all
other proteins. This is almost certainly a problem
with the multiple alignment.
Despite these issues, the secondary structure pre-

diction was adequate to allow the prediction of the
central features of the supersecondary structure. A
parallel core â sheet was correctly predicted, as was
the packing of separate â-R-â units.
The prediction proved to have more than academic

implications. The Florida prediction was prepared
for an industrial collaborator, who was interested in
the mechanistic implications of the structure. The
model predicted that the phosphatase would have
two metals in the active site and catalyze the hy-
drolysis of the phosphate using a two-metal mecha-
nism. The crystal structure is consistent with this
proposal. The model also allowed the identification
of loops as appropriate targets for peptide-based
epitopes. Thus, consensus predictions can have
practical value, even when they are at low resolution.
This prediction further illustrates the need to build

preliminary tertiary structural models as a first step

toward evaluating the plausibility of a prediction.
This is similar to using a secondary structural model
to evaluate the plausibility of parses and surface/
interior assignments.
Last, it is interesting to compare the Oxford and

Florida predictions for the protein serine/threonine
phosphatases. Both groups are using similar meth-
ods, even though the underlying conceptual basis for
the two approaches differ somewhat. The predictions
are different only in their details, and even these can
be understood if one understands the differences in
the approach. For example, the Oxford prediction
misassigns strand 1 (positions 023-027) as an exten-
sion of helix 1; the Florida prediction terminated the
helix at the correct point. The transparency of the
prediction allows us to understand the difference. The
PN dipeptide found at positions 021 and 022 in many
of the homologs is a “dipeptide parse” (see above), and
caused the predictors in Florida to terminate the
helix. The dipeptide parsing tool is implemented in
Florida, but not in Oxford.

6. The Proteasome

The proteasome is the central enzyme of nonlyso-
somal protein degradation, and its 20S core is con-
served from archaebacteria to humans. A low-
resolution model shows that the protein is cylindrical
and is built from two subunits (in the archaebacte-
rium), termed R and â. The R and â subunits are
themselves homologous (Figure 36), with approxi-
mately 26% overall sequence identity.
Using a set of aligned sequences, Lupas et al.

predicted a consensus secondary structure for the R

Figure 34. Representative sequences, bona fide consensus prediction,281 and experimental secondary structure288 for the
protein tyrosine phosphatase family. Key: E, â strand; H, R helix.
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and â subunits of the 20S proteasome.289 Information
was also obtained by electron microscopy and image
processing of the proteasome from the archaebacte-
rium Thermoplasma acidophilum, making the pre-
diction not entirely ab initio. However, theory was
the most important tool in the model building, and
virtually every tool available was used. Assignments
of surface and interior residues, made as discussed
above, were obtained using DARWIN as implemented
on the ETH server and used to derive secondary
structure predictions. The PHD server was consulted
to obtain an independently predicted secondary struc-
ture.208 Consensus Chou-Fasman and GOR predic-
tions were obtained, as were predictions using the
Presnell-Cohen tool.290 Thus, this prediction repre-
sents a “state-of-the-art” combination of imaging and
modeling.

The predicted and experimental secondary struc-
tures are compared in Figure 36.291 The correspon-
dence between the experimental and predicted struc-
tures were very good. No serious mispredictions
were made, and only two short strands were missed.
It is interesting to note that both the transparent
prediction and the PHD server made similar under-
predictions in one region. PHD predicts that the
third strand in the R subunit is a helix, while the
aligned region in the â subunit is predicted to be a
strand. The transparent prediction tool identifies
this as a surface region, with perhaps one interior
hydrophobic residue anchoring the element. As
noted above, this could be either a coil or a strand.

The crystallographers assign a strand to this
region.

D. The Critical Assessment of Structure
Prediction (CASP1) Project

The Critical Assessment of Structure Prediction
(CASP) project was undertaken to supplement the
bona fide prediction efforts described above. CASP
was organized by John Moult and Jan Pedersen from
the Center for Advanced Research in Biology, Krzysz-
tof Fidelis from the Lawrence Livermore Laboratory,
and Richard Judson from the Sandia National Labo-
ratory. The first phase of the CASP project (entitled
CASP1) was completed in December 1994 with a
meeting in Asilomar. The project attracted several
dozen participants.148 A discussion of the project,
including the homology modeling, knowledge-based
modeling, and threading projects can be found in a
special issue of Proteins: Structure, Function and
Genetics.48

In achieving the goal of bringing together large
numbers of predictors and exchanging ideas, CASP1
was quite successful. In terms of generating insights,
the project was frustrated by a lack of uniformity in
the format in which predictions were submitted, the
absence of some key individuals in the field from the
list of participants, and the difficulty in obtaining
contributions from crystallographers. These prob-
lems have been largely resolved in the second phase
of the project, CASP2, completed in December 1996
(see below).

Figure 35. Representative sequences, bona fide consensus predictions,96,286 and experimental287 secondary structure for
the protein serine/threonine phosphatases. Protein sequences are read vertically. From left to right, the columns are
alignment numbering, position number in 1tco,287 functional residues conserved across the entire alignment (lower case,
almost entirely conserved), interior score (from DARWIN; higher values mean more buried), surface score (from DARWIN;
higher values mean more exposed), multiple sequences, secondary structure (key: E, â strand; H, R helix; $, active site;
3, 310 helix) first from the Florida group,96 then from the Oxford group,286 then experimental secondary structure.287 The
reader is encouraged as an exercise to build helical wheels to see how a helix can be transparently predicted from the
predicted interior and surface assignments.
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Some of the CASP1 results relating to molecular
mechanics and threading predictions were discussed
above. Below, we discuss the ab initio predictions
that are based on evolutionary analyses. A more
detailed analysis was provided by DeFay and
Cohen.62

1. 6-Phospho-â-D-galactosidase

Several predictions were prepared for 6-phospho-
â-D-galactosidase as part of the CASP1 project. One
was fully transparent.292 A second used directly the
PHD neural network.208 Still others were based on
threading heuristics. Figure 37 compares the pre-
dicted and experimental structures.80

The transparent prediction assigned both second-
ary structure and the tertiary fold. The protein was

predicted to adopt an eight-fold R-â barrel fold as
the conserved core, and this prediction was correct.
Thus, this prediction is another example of a case
where a secondary structural model was put to good
use by serving as the starting point for tertiary
structure modeling. It should be pointed out, how-
ever, that the R-â barrel has proven in many cases
to be an easy fold to identify.
This particular barrel was difficult to identify

because the core barrel was interrupted in the
primary sequence by segments of polypeptide chain
that looped out to form a separate domain. In the
transparent prediction, this was recognized because
the second domain was not conserved in the super-
family of proteins containing phospho-â-galactosi-
dase, and the barrel structure was correctly pre-

Figure 36. Representative sequences, bona fide consensus prediction,289 and experimental291 secondary structure for the
homologous R and â proteasome subunits. Separate experimental secondary structural assignments are reported for the
R and â subunits. Key: E, â strand; H, R helix. In the prediction, “e” refers to a weakly predicted strand, while “E” refers
to a strongly predicted strand; “h” refers to a weakly predicted helix, while “H” refers to a strongly predicted helix. The
underlined secondary structural element is predicted inconsistently by the PHD server.218

Bona Fide Predictions of Protein Secondary Structure Chemical Reviews, 1997, Vol. 97, No. 8 2781



2782 Chemical Reviews, 1997, Vol. 97, No. 8 Benner et al.



dicted. Modeling based on the PHD secondary
structure prediction favored (incorrectly) a sheet
structure.
Di Francesco et al.179 recently commented on pos-

sible approaches toward the prediction of the non-
conserved domain in this protein. They came to the
interesting conclusion that fewer sequences showing
less sequence divergence overall might have produced
a better prediction for the nonconserved noncore
domain, at least when using a consensus GOR
analysis. This is an intriguing idea deserving further
exploration.
More divergent sequences contain more informa-

tion of some types (for example, the location of active
sites). However, they also differ more in their
conformation. At the very least, this makes scoring
difficult. However, if substantial modification of
secondary structure has taken place in noncore
domains, the signal arising from the sequences
themselves might be confusing. In these cases, it
might be better to make predictions for subfamilies,
as has been done now in many cases.248,260,292

2. Xylanase
If further evidence were needed to show that eight-

fold R-â barrels can be identified in 1996 with high
reliability, the PHD neural network prediction of
xylanase provides it. Figure 38 shows the prediction
with the subsequently reported experimental struc-
ture.296 Unlike phospho-â-galactosidase, xylanase is

a relatively simple barrel, lacking intervening sec-
ondary structural elements. Thus, with the exception
of one core strand that the PHD prediction missed,
the prediction is essentially perfect.

3. Synaptotagmin
Synaptotagmin is a protein domain involved in

membrane fusion, and is also found in protein kinase
assemblies. The prediction is presented in two ways,
the first in “transparent form” (Figure 39),297 the
second in a form summarizing all of the predictions
made in the CASP1 program for the protein (Figure
40). An experimentally derived assignment of sec-
ondary structure accompanies each.298
The transparent synaptotagmin prediction identi-

fies the first seven â strands of the fold essentially
correctly.79 Further, with the exception of â 4, the
beginnings and ends of the predicted strands cor-
respond well with those assigned by DSSP to the
experimental coordinates. Further, the assignments
of secondary structure in the synaptotagmin family
were correct for the correct reasons. Figure 39 shows
both the predicted assignment of secondary structure
(S and s for strong and weak surface assignments, I
and i for strong and weak interior assignment) and
the experimental assignments (from DSSP). For â
1, â 2, â 3, â 5, and â 7, surface and interior residues
were correctly assigned. From these, the assignment
of the â strands is transparent. The reader should
inspect Figure 39 to see how the alternating surface/

Figure 37. Transparently predicted292 and experimental80 secondary structure for phospho-â-galactosidase (Lactococcus
lactis) (LACG LACLA P11546, 1pbg). Key: E, â strand; H, R helix; , indel. Experimental structure assigned by DSSP.
The underlined regions designate the core secondary structural elements in the conserved R-â barrel domain. These are
assigned using the DEFINE program. This illustrates the accuracy of the consensus prediction in the assignment of
secondary structure to elements of secondary structure that are conserved throughout the protein family, but not (by
definition) to those that are not. Other predictions were generated by the following individuals using the tools indicated:
Livingston,293 Sander,294 Munson Quadratic Logistic,295,179 and Munson/Garnier Combine.178

Bona Fide Predictions of Protein Secondary Structure Chemical Reviews, 1997, Vol. 97, No. 8 2783



interior assignments allowed prediction of strands in
these regions.

â 4 is too short to be analyzed in this fashion with
statistical significance. The segment containing â 6
was correctly identified as being largely internal, and
the secondary structure correctly assigned using a
different rule-based approach.
The single mistake made in the transparent pre-

diction was the misassignment of the final strand as
a helix. This misassignment was made because of
wide divergence of the sequences in this region and
an imprecise placement of a parse. It is interesting
to note that this misassignment had essentially no
impact on the efforts to build a tertiary structure
from the assembled secondary structural elements,
in part because this was the final secondary struc-
tural element in the protein, and in part because this
element was not at the core of the folded structure.
The prediction was sufficiently accurate to permit

the correct tertiary fold to be proposed as one of three
alternative folds. To build a tertiary structural
model, a combinatorial approach first assembled all
possible sheet structures from the predicted second-
ary structural elements.297 A large majority of these
were then excluded by enforcing certain connectivity
of strands in a â sheet, avoiding loop crossovers, and

using other rules that have (at least some) empirical
basis.300 Efforts were made to construct a calcium
binding “active site” in the protein fold (see below).
After this process was complete, three folds re-
mained.
The database was then examined for analogs for

the three remaining folds. The first, where the
strands were placed consecutively around a â sand-
wich, found its closest analog in the retinol binding
protein (where the strands form a consecutive anti-
parallel â sheet defined in the ABCDEFG se-
quence).302 This is, of course, a “knowledge-based”
approach to modeling. Including a single Greek key
element in the fold approximated the fold found in
pseudoazurin.303 To make this analogy “work”, the
first strand of pseudoazurin was ignored, and a
strand was moved from one sheet in the â sandwich
to the other. The final topology is best described as
ABEDCFG. The third remaining fold had the topol-
ogy similar to that found in the pleckstrin homology
domain (ABCDGFE).271
Criteria were then considered to distinguish be-

tween these three alternative packings. These sug-
gested a weak preference for a fold similar to that
found in the pleckstrin homology domain. In fact,
the “modified pseudoazurin” fold turned out to be an

Figure 38. Sequence, predictions294 from the CASP1 site (http://PredictionCenter.llnl.gov), and experimental secondary
structure for xylanase, (Pseudomonas fluorescens)(P14768, 1clx XYNA PSEFL). Key: E, â strand; H, R helix; e, weakly
predicted strand; h, weakly predicted helix; 3, 310 helix; ., unpredicted. The Sippl prediction was based on threading onto
1tim-b (triose phosphate isomerase), the Hubbard prediction was based on threading onto 1xla (D-xylose isomerase).
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approximately correct model for the fold of synap-
totagmin as determined experimentally. The order
of the strands in the â sandwich is correctly assigned
(with the omission of the first strand of pseudoazurin,
which has no counterpart in the model, and the
misassigned helix). The closest analog in the data-
base for the fold of synaptotagmin is PapD, which
contains the connectivity of the pseudoazurin fold.
These results underscore the need to identify rules,
perhaps based on contact potentials or real poten-
tials, for identifying a preferred domain from a small
number of alternatives.
The most interesting success of the transparent

synaptotagmin prediction is the quality of the model
built for the calcium-binding active site. In the
prediction, Asp 48 (Asp 178 in the synaptotagmin
numbering), Asp 104 (Asp 230) and Asp 106 (Asp
232) and Glu 81 (Glu 208) were assigned as calcium-
binding ligands. Except for Glu81, these proved to
form the putative calcium-binding active site in
synaptotagmin.
A collection of transparent, neural network, and

threading predictions is presented in Figure 40. The
PHD-based prediction216 is essentially the same as
the transparent prediction, misassigning the final
strand as well. The reproduction by the PHD neural

network (at least in its 1994 version) of mistakes
made by transparent methods appeared to be fre-
quent. The prediction by Barton’s group contains a
serious mistake, misassigning a core strand as a
helix. The remaining predictions are less well suited
to serve as starting points for tertiary structural
modeling.

4. Staufen

The staufen protein provided an opportunity to
compare several largely nontransparent prediction
tools. Figure 41 collects a variety of predictions made
for the protein, together with an experimental sec-
ondary structure.301

Hubbard216 evidently submitted the target se-
quence to the PHD neural network, which retrieves
homologous sequences from a database, constructs
a multiple alignment, and then makes a secondary
structure prediction. The secondary structure was
predicted to be R-â-â-â-R (Figure 41). This pre-
diction is essentially correct. This model was then
used to search the crystallographic database to
identify proteins having a similar fold. Positions
150-222 of cytoplasmic malate dehydrogenase (2cmd)
were recovered. A tertiary structure model for

Figure 39. Representative sequences, transparent consensus prediction,297 and experimental298 secondary structure for
the synaptotagmin family, presented to show the reader how a transparent prediction works.79 Protein sequences are
read vertically. Key: E, â strand; H, R helix; A, active site . In the prediction, “e” refers to a weakly predicted strand, while
“E” refers to a strongly predicted strand; “H” indicates a strongly predicted helix. The predicted surface accessibility of
each residue side chain is indicated by S and s (strong and weak surface prediction) and I and i (strong and weak interior
prediction). Experimental surface accessibility is reported in terms of relative side chain accessibility to solvent. Residues
involved in calcium binding are indicated in the right column.298

Figure 40. Sequence and predictions from the CASP1 site, and experimental298 secondary structure for the first C2 domain
of synaptotagmin (P21707, 1rsy SYT1 RAT), which forms a Greek key â sandwich. Key: E, â strand; H, R helix; e, weakly
predicted strand; h, weakly predicted helix. Prediction made by Hubbard216 combines the PHD neural network and hidden
Markov models. The prediction of Sippl,299 Clarke, and Matsuo are based on threading tools.
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staufen was then based on the experimental struc-
ture of this segment of malate dehydrogenase.
Three details of this prediction are remarkable and

worth discussion. First, a second prediction was
submitted to CASP1 using the PHD neural network
(the prediction marked “Sander” in Figure 41). Al-
though it was evidently obtained from the same
server, the “Sander” prediction is quite different from
the “Hubbard” prediction: at only 67.5% of the
positions is secondary structure for the “Sander” PHD
prediction the same as the “Hubbard” PHD predic-
tion. In other words, the Q3 score of one PHD
prediction scored using the other output is only
67.5%. We cannot say from information available
from the Web site how these two predictions, ended
so differently. Different versions of the PHD may
have been used. Different sets of homologs might
have been retrieved. Hubbard evidently adjusted the
multiple alignment by hand, while the Sander group
evidently did not. In any case, it is remarkable how
different the output was given what presumably were
only minor differences in the input, and points out
again the need to look closely at the details of each
prediction to learn the most from a prediction.
The second thing unusual about the Hubbard

prediction is that the HMM identified in the crystal-
lographic database a domain with a fold similar to
that of staufan, but different in a critical feature. The
domain came from the middle of the cytoplasmic
malate dehydrogenase and is almost certainly not
homologous to staufen. It is almost inconceivable
that the RNA binding domain of staufen evolved by
extraction of a segment in the middle of an enzyme.
If not, then the conformational similarity between
staufen and residues 150-222 arose by convergent
evolution.
Third, the crystallographic database evidently does

contain a homolog of staufen, the N-terminal domain

of the rS5 protein from Bacillus subtilis. This was
the reference protein found by Sippl in the threading
portion of CASP1, which also considered staufen.
Further, the crystallographers identify and discuss
the homolog. The homolog apparently lacks the first
helix. From our understanding of the method used
by Hubbard to find analogous structures in the
database, the first helix would have been required
to find this homolog.
The Garnier SIMPA prediction is also interesting.

The tool provides either a homology search or a
knowledge-based model, depending on the circum-
stances. SIMPA searches up to a 17 residue window
to find in the crystallographic database the most
similar sequence. If this similarity indicates homol-
ogy, then the tool is doing homology modeling and
predicts secondary structure quite well (Q3 ≈ 86%).
If the similarity indicates merely analogy, then it is
knowledge-based modeling, and the tool does less
well (Q3 ≈ 64%).
The Web site does not inform us in this case

whether the prediction tool believes that it has
identified a homolog. On one hand, the Q3 for the
SIMPA prediction for staufen is a high 82%, which
would indicate that SIMPA has found a homolog. On
the other hand, the prediction contains a serious
misassignment; the first strand of a three strand
sheet is assigned as a helix. This implies that SIMPA
has not found a homolog. The analysis stops here.
The perplexities of the three-state score are il-
lustrated well here, as well as the importance to
examine closely the details of each prediction to learn
the most from a prediction exercise.

5. The L14 Ribosomal Protein

The L14 ribosomal protein is largely built from
strands, with a terminal helical region.304 The

Figure 41. Sequence predictions from the CASP1 site, and experimental301 secondary structure for domain 3 of staufen
(STAU DROME, P25159, 1stu). Key: E, â strand; H, R helix. Predictions were generated by the following individuals
using the tools indicated: Garnier Simpa,132 Hubbard,216 Livingston,293 Sander,294 Munson Quadratic Logistic,179,295 and
Munson/Garnier Combine.178 The prediction of Sippl is based on a threading tool 299 as is that of Matsuo.
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predictions based on the PHD neural network identi-
fied the critical strand region quite well (Figure 42),
although the discrepancies between the “Hubbard”
and “Sander” prediction remain. Interestingly, the
Sander prediction is marginally better, even though
it was evidently built from an unrefined alignment.
The QL prediction assigned the terminal helices
correctly. The remaining predictions were less suc-
cessful.

6. The Subtilisin Propiece Segment

Figure 43 shows a collection of predicted secondary
structures for the subtilisin propiece segment, com-
pared with the experimental assignment.305 The
figure is self-explanatory. None of the predictions
were particularly outstanding, and none were based
on a transparent method. Thus, it is difficult to learn
from these results.

7. The Replication Terminator Protein

Figure 44 shows a collection of predicted secondary
structures for the replication terminator protein
compared with the experimental assignment.306 The
figure is self-explanatory. The prediction of Living-

ston was the best at identifying core secondary
structural units. None of the predictions were par-
ticularly outstanding, and none were based on a
transparent method.

8. Predicting the Conformation of the “Mystery Protein
Sequence”

Students in a protein-design course were chal-
lenged to design a polypeptide sequence that would
fold to form an eight-fold R-â barrel. The mystery
sequence was synthesized and, evidently, did not
form the designed structure.62 Nevertheless, param-
eterized prediction tools predicted the designed “struc-
ture” well. The extremely accurate secondary struc-
ture predictions shown in Figure 45 show that the
rules used to predict these barrels are quite similar
to the rules taught to students in protein design
courses. They are evidently not, however, the rules
that Nature uses for folding barrels.
An intriguing paradox is presented if it proves to

be easier to predict R-â barrels than to design them,
as it contrasts with the conventional wisdom that
holds presently that design is easier than prediction.
From a physical organic chemical perspective, design

Figure 42. Sequence and predictions from the CASP1 site and experimental304 secondary structure for the L14 prokaryotic
ribosomal protein, (Bacillus stearothermophilus) (RL14 BACST, P04450, 1whi). Key: E, â strand; H, R helix. Predictions
were generated by the following individuals using the tools indicated: Garnier Simpa,132 Hubbard (PHD/HMM),216
Livingston,293 Sander,294 Munson Quadratic Logistic (QL),179,295 Munson/Garnier Combine,178 Matsuo (thread), andWilmanns
(thread).
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is not subject to the Darwinian process of random
modification subject to functional constraints; it is
quite clear that a designed peptide that does not fold
can be just a few amino acids away from a peptide
that does fold. It is interesting to note that much of
organic chemistry is presently focused on “combina-
torial” methods. These are, of course, the organic
chemistry analogy of Darwinian evolution.

VII. Using Evolution-Based Predictions of
Secondary Structure

Both the pre-CASP1 predictions and the CASP1
project itself showed that transparent methods could

predict the secondary structure of proteins reliably,
with neural networks improving over this period to
come to match more closely the predictions made by
transparent methods. Nevertheless, the prediction
methods could not guarantee models free of all
serious misassignments. While “perfect” predictions
exist, and most of the later models assigned most core
secondary structural elements correctly, predictions
for a large protein contained on average one core
element that was misassigned. This limitation was
only partly mitigated by evolutionary analyses that
were frequently able to identify in advance the
problematical assignment(s) and to alert the user to
the possibility that alternative secondary structural

Figure 43. Sequence and predictions from the CASP1 site, and experimental305 secondary structure for the propeptide of
subtilisin BPN′, (Bacillus subtilis) (SUBT BACAM, P00782, 1spb). Key: E, e, â strand; H, h, R helix. Predictions were
generated by the following individuals using the tools indicated: Livingston,293 Sander,294 Hubbard (PHD/HMM),216 Munson
Quadratic Logistic (QL),179,295 and Munson/Garnier Combine.178 The prediction of Sippl was based on threading to ferredoxin
(2fxb).

Figure 44. Sequence and predictions from the CASP1 site and experimental306 secondary structure for replication
terminator protein (RTP), (Bacillus subtilis) (RTP BACSU, P14382). Key: E, e, â strand; H, h, R helix; L, loop; ., unassigned.
Predictions were generated by the following individuals using the tools indicated: Livingston,293 Sander,294 and Hubbard
(PHD/HMM).216 The Sippl prediction was based on threading to the globular domain of histone-H5 (1hst).
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models must be built (as in the protein serine/
threonine phosphatases).96
Despite these limitations, the secondary structure

predictions made in the 1993-1996 period were of
sufficient quality to give them practical value. As
this was the first time that this could be said for any
prediction methodology, this represents progress. In
several cases, predicted secondary structure models
have been used to identify antigenic determinants in
a protein family,307 guide and interpret site-directed
mutagenesis studies,308 identify phosphorylation and
glycosylation sites in proteins, assist in experiments
to immobilize proteins, and bias combinatorial librar-
ies when searching for protein ligands. Two other
applications are discussed in detail below.

A. Detecting Long Distance Homologies
Secondary structure predictions may be used to

identify long-distance homology between protein
families with only marginal sequence similarities.92
Often, comparison of two protein sequences identifies
motifs, short stretches of polypeptide that are sug-
gestive of homology between two protein families.309
By themselves, common motifs are not proof of
homology, as the probability that such sequence
motifs emerged by random chance in evolution is
high. Thus, after identifying a motif, the issue then
becomes whether the motifs are true indicators of
homology, or whether they arose by convergent
evolution.

Secondary structure predictions allow this question
to be addressed in several cases. Most simply, the
secondary structural elements flanking the motifs in
the two protein families are compared. If the motif
truly indicates distant homology, it should be embed-
ded within the same secondary structural elements.
Most simply, four embeddings are possible for a
motif: helix-motif-helix, strand-motif-helix, helix-
motif-strand, and strand-motif-strand. If the mo-
tif is not embedded in the same secondary structural
elements in two protein families, the motif is not a
likely indicator of homology.
Alternatively, the number and sequence of the

secondary structure elements can be compared over-
all. Here, the distinction between core and periph-
eral secondary structural elements, apparent in a
consensus model, is important. Simple segment-by-
segment comparison of secondary structural elements
will prevent clear identification of homologs if the
comparison includes secondary structural elements
that are not likely to be conserved.
Perhaps the most striking case where secondary

structure predictions were used in this fashion is in
the protein kinase prediction.91 Many had conjec-
tured that because protein kinase shared the se-
quence motif, Gly-Xxx-Gly-Xxx-Xxx-Gly with other
kinases, protein kinases were homologous to these
other kinases, and would adopt the same fold as other
kinases. Several models of the overall fold of protein
kinase were built on the basis of this assumption. In

Figure 45. Sequence and predictions from the CASP1 site for the “Mystery protein”, a protein designed in a course to
fold as an eight-fold R-â barrel; when the protein was synthesized, it evidently did not form the designed structure.62
Nevertheless, parameterized prediction tools “predicted” the designed “structure” well. Key: E, e, â strand; H, h, R helix.
Predictions were generated by the following individuals using the tools indicated: Livingston,293 Sander,294 and Munson
Quadratic Logistic (QL),179,295 and Munson/Garnier Combine.178 The Sippl prediction was based on threading to 1pgd
(platelet-derived growth factor) while that of Barton was to 5rub (ribulose 1,5-bisphosphate).
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the prediction made using contemporary methodol-
ogy, it was noted that the motif was not flanked by
the same secondary structural elements, and that
this implied that protein kinase adopted a fold
different from that found in other kinases. The
conclusion was that the core domain most likely
contained an antiparallel â sheet.91 The experimen-
tal structure proved the prediction to be correct.
While many examples are now available where
secondary structure predictions have been used to
confirm suspicions of long-distance homology, this is
(we believe) the first time that a secondary structure
prediction has been used to deny long-distance ho-
mology.
The use of predicted secondary structural models

to assign long-distance homology is now becoming
commonplace. Two recent examples involve the
assessment of long-distance homology among pyri-
doxal-dependent enzymes92 and the ribonucleotide
reductases.251 Such research is in part based on the
notion that practical solutions to the structure pre-
diction problem are most likely to come from the
recognition of existing (known) structures that fit the
sequence of the unknown structure.310
At one level, use of predicted secondary structural

elements can be viewed as threading, but using
predicted secondary structural elements instead of
sequence. Russell et al. recently extended the ideas
outlined above more systematically.311 This suggests
a bright future for applying predicted secondary
structures to detect long distance homologs. Already,
in the setting of the pharmaceutical industry, these
are among the most widespread applications of
secondary structural models predicted using trans-
parent tools.

B. Building Supersecondary and Tertiary
Structural Models
The second application of a secondary structure

prediction is, of course, the prediction of super-
secondary and tertiary structure. Virtually all pre-
dictions using contemporary methods make an at-
tempt to build such models. In general, the overall
features of the core fold have been correctly assigned.
Thus, the antiparallel cores of protein kinase, cyclin,
and synaptotagmin were all correctly predicted (see
above), as were the parallel cores of protein serine/
threonine phosphatase, the proteasome, and other
structures.
It remains a difficult task to identify the precise

orientation of secondary structural elements within
an overall model. As discussed above, the synap-
totagmin prediction narrowed the possibilities to just
three, one of which was correct. Indeed, it is a
frequent occurrence for a tertiary structural model
to be largely correct, except for the swap of a â strand
or the reorientation of a helix.
To facilitate the development of procedures to take

this final step in the construction of consensus models
for protein folds, improved computational tools are
necessary that assemble predicted secondary struc-
tural elements into supersecondary and tertiary
structural models. No such tools exist today, al-
though some steps in this direction are now being
taken.63,312 As noted throughout this review, such

tools would be useful not only in building tertiary
structural models, but also in refining secondary
structure models in difficult regions (for example,
near an active site). Predictors are already attempt-
ing to refine secondary structure predictions by
determining which of a small number of alternative
models is most easily assembled to give a tertiary
structure, and computer assistance would be warmly
welcomed in this area.
A second obstacle to obtaining better tertiary

structural models is the absence of reliable long-
distance constraints on the fold. Several approaches
are emerging that might help obtain these long
distance constraints. Long-distance compensatory
covariation, where amino acids not adjacent in the
polypeptide chain undergo correlated substitution,
may identify supersecondary structural units.91,313-316

Again, the protein kinase prediction offers a para-
digmatic example, where a long-distance charge
compensatory covariation was used to orient two
strands antiparallel.91 More recently developed tools
were applied in the CASP2 project (see below). Chain
connectivity also proves to be a powerful tool for
assembling the topology of â sheets, as outlined many
years ago by Cohen et al.317 Further rules must be
developed to identify different types of connecting
loops from patterns of variation and conservation in
a family of proteins. Finally, if disulfide bonds are
present with known connectivity, many conceivable
folds can be excluded. To date, no reliable tools are
available for predicting disulfide connectivity from
sequence data alone.
For many of the predictions above, secondary

structural models were used to generate tertiary
structural models with varying degrees of resolution.
Surprisingly, virtually all of them were correct, at
least as far as they went. The antiparallel sheet in
the first domain of protein kinase,91 and the three
folds of synaptotagmin,297 are cases of a priori
tertiary structural modeling based on predicted
secondary structural units. In some predictions of
R-â barrels, in the cyclins,204 and in the cytokine
receptors,201 the tertiary structural modeling perhaps
might viewed as threading. However, given that all
biochemists have known about helices and strands
since their introductory biochemistry courses, all
prediction is partly knowledge-based modeling.
A particularly interesting case is the bona fide

consensus prediction for the chaperonin GroES.318
Many items of information were brought to bear on
the modeling problem, including experimental infor-
mation from electron microscopy, NMR, and FT
infrared spectrometry). As Figure 46 shows, the
predicted and experimental structures are quite
similar.319 Because of the input of substantial amount
of experimental data concerning conformation, the
prediction cannot be regarded as truly ab initio.
However, it does show how a highly accurate model
could be built in 1996 from a combination of bio-
physical and theoretical data.

VIII. The CASP2 Prediction Project

The successor to the CASP1 project was the CASP2
prediction project, which was completed in December
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1996. Few events of the year showmore convincingly
how the field of structure prediction has changed
since the early 1990s. Some 70 research groups
participated in the project, showing that bona fide
prediction is now widely accepted by practitioners.
The project attracted the attention of those outside
the field as well, particularly among experimental
biochemists who were encouraged by the rigor of
bona fide predictions.130 The protein sequence da-
tabases had grown further, making more targets
susceptible to evolution-based analysis. And the
number of correct secondary structure predictions
was higher in CASP2 than in CASP1, as was the
number of times correct inferences concerning ter-
tiary structure and distant homology were drawn
from a correct secondary structure prediction.

A. Design of the CASP2 Prediction Project

As with the CASP1 project, the targets in the
CASP2 prediction project fell into several categories.
For the first time, the project included a set of
docking problems. Here, the task was to predict how
two molecules of known structure would interact.
The remaining tasks were analogous to those

presented in the CASP1 project. Comparative mod-
eling targets were chosen to be proteins whose
sequences and folds were both similar (but not
identical) to those of proteins in the PDB crystal-
lographic database. The challenge was to predict
how the structure of the target protein differed from
the structure of the homolog with known structure.
The third task concerned “fold recognition targets”,

proteins having folds similar overall to proteins in
the PDB crystallographic database, but where a
typical sequence search would not indicate homology
between the target and known protein. The chal-
lenge associated with these targets was to identify
the structure in the crystal database that had the
same fold as the target protein, starting from the
assumption that such a structure existed. This
challenge was most often approached using tools
related to profile analysis or threading.
Most relevant to this review were the ab initio

tasks presented in the CASP2 project. As with the
fold recognition tasks, these required conformational
predictions to be made for proteins sharing no obvi-
ous sequence similarity to proteins with known
conformations. The task was distinct from the “fold
recognition” challenges in the way in which the
predictions were made. Fold recognition methods
presume that a similar fold exists in the database,
and try to find it. As discussed above, ab initio
predictions are made with no explicit attempt to

identify a fold in the database. The former must fail
if the target protein has a unique fold, while the
latter need not.
As in CASP1, ab initio predictions in CASP2 were

approached in two very different ways. The first
used force field or simulation methods together with
computational search algorithms to find a global
energy minimum for the protein sequence. The
second approach was evolution based, attempting to
extract conformational information from a set of
homologous proteins whose sequences had been
placed in a multiple alignment.
In CASP2, many of the methods discussed above

were applied in their latest form. These included
tools that began by predicting features of tertiary
structure in the protein (surface residues, interior
residues) as discussed above, tools that predicted
secondary structure directly (as in a consensus clas-
sical approach), and tools for finding contacts be-
tween residues by compensatory covariation analy-
sis.91,313-316 Embolded by successes in CASP1 and
elsewhere, several groups then attempted to as-
semble predicted secondary structural elements to
generate models for supersecondary and tertiary
structure.
Unlike those in CASP1, where different submission

formats from different groups created problems for
evaluators, submissions to CASP2 were made using
a uniform set of formats, adjusted to allow description
of the predicted models at the different levels of
resolution implied by different prediction tools. At
the lowest level of resolution were predictions that
provided a simple secondary structure model for the
protein sequence. An example of the format is shown
in Figure 47, which contains a prediction for ferro-
chelatase, one of the CASP2 targets. The sequence
is read vertically. The first column is the amino acid
of the target protein (one letter code). The second
column allows the predictor to assign secondary
structure by choosing one of three states (C ) coil;
H ) helix; E ) strand). A feature of the submission
format allowed the predictor to designate, residue by
residue, a reliability of the secondary structure
assignment. This was done by providing a number
from 0 to 1 to indicate increasing confidence in the
assignment. This feature conformed to the output
of several automated prediction tools.
The successes in predicting secondary structure,

including the correct modeling of the tertiary struc-
ture of phospho-â-galactosidase from predicted sec-
ondary structural elements, encouraged several groups
to attempt to assemble the predicted secondary
structural elements into supersecondary structural
models and tertiary structural models. This brought

Figure 46. Representative sequence, predictions,129,318 and experimental319 secondary structure for GroES.
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secondary structural elements into contact with each
other. Lesk recently proposed a terminology to
describe segment contacts, a terminology that allows
a low-resolution description of a model.320 The
terminology provides an excellent way to describe
consensus predictions, and CASP2 adopted this
terminology for this purpose.
At the highest level of resolution, atomic coordinate

sets could be submitted. These were the preferred
submission format for those who did energy optimi-
zations. The organizers applied a set of tools to
convert these into secondary structural models and
contacts.
The targets that were presented for ab initio

predictions are collected in Table 10, together with
data concerning the target and the evolutionary
family to which it belongs. The predictors and their
“predictor numbers” are collected in Table 11. Pri-
mary information on the CASP2 predictions is pro-
vided on the Prediction Center Web Page (URL:http:
//PredictionCenter.llnl.gov/WWW/casp2/evaluation.
html).

B. Evaluation of the ab Initio Portion of the
CASP2 Project
Arthur Lesk judged the ab initio portion of CASP2,

and his scholarly assessment174 is its official evalu-
ation. Judging can be the least rewarding part of such
projects, and it is a please to note the number of
individuals, including the authors of this review, who
appreciated the collegiality and intellectual precision
that Lesk brought to this task. Lesk cited the neural
network of ROST as the best tool for generating
secondary structure models, the tool of JONES for
producing the 3D structure predictions, the team of
Olmea, Pazos and Valencia (VALENCIA) for assign-
ing residue-residue contact patterns the best, and
the COBEGETJ team of Cohen, Benner, Gerloff,
Turcotte, and Joachimiak (the COHEN and BEN-
NER predictions in the Figures) for making the best
segment contact patterns.
Lesk recognized, of course, that his summary could

not cover everything that was important in the
project and depended on criteria that were, again by
necessity, arbitrary. Accordingly, Lesk outlined in
some detail his criteria for judging predictions.

Figure 47. A transparent bona fide prediction prepared by the Benner group for ferrochelatase, showing the new format
for the submission of bona fide secondary structure predictions used in CASP2. The sequence is read vertically. The first
column is the amino acid of the target protein (one letter code). The second column is the secondary structure prediction
(C, coil; H, helix; E, strand). The number (0 to 1) allows the predictor to assign a reliability to the assignment. This format
standardized submission of secondary structure predictions, facilitating their evaluation.
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First, Lesk understood that different methods for
assigning reference secondary structure to experi-
mental coordinates might not make consistent as-
signments. An ambiguous reference structure cre-
ates ambiguous scores (section II.A). Lesk therefore
examined the secondary structural assignments made
by both DSSP and STRIDE to the target proteins.
Three-state (Q3) assignments were found to disagree
at from 2% to 14% of the residues. Lesk noted that
in five of the 16 targets listed in Table 10, DSSP
identified one secondary structural element (strand
or helix) that was not identified by STRIDE, or vice
versa. Considering these differences to be small,
Lesk based his assessment of secondary structure
predictions based on a comparison with DSSP as-
signments alone.
Two other features characterized the official evalu-

ation. First, it relied on Q3 scores to judge secondary
structure predictions. A prediction was counted in
the official evaluation if and only if it had aQ3 greater
than 68%. A list was prepared of predictors who had
contributed a prediction for each target that had a
Q3 score of 68% or greater. A manuscript version of
this list is reproduced in Table 12. The predictor
producing the highest Q3 score for each target was
also noted. A histogram was prepared that listed,
by predictor, the number of predictions that they each
made with a Q3 greater than 68%.
Second, to evaluate the relative performance of

different methods, Lesk counted the total number of
predictions with a Q3 greater than 68%. No normal-
ization was made for the number of targets predicted
by each method. This approach was designed as a
way to identify methods that produced a “sustained
good performance, rather than good results only
occasionally”. This analysis led to the official assess-
ment that the secondary structure prediction tools
of ROST, JAAP, SOLOVYEV, and STERNBERG
were the most powerful for predicting secondary
structure, as these were the tools that generated the
largest absolute number of predictions withQ3 > 68%
for the 16 targets designated by the conference
organizers as being appropriate for ab initio predic-
tion.

C. Problems Encountered in Judging the CASP2
ab Initio Predictions
Earlier sections of this review have discussed some

of the problems associated with evaluating predic-
tions of protein conformation. Several points are
clear. First, and most important, to compare differ-
ent methods, predictions of conformation are best
made in parallel on the same protein targets. Espe-
cially for evolution-based predictions, where the
number and divergence of proteins in a family can
differ widely by family, some targets are “easier” than
others.
Once a uniform set of targets is chosen, it is best

to evaluate the predictions using tools that reflect the
value of the prediction in addressing further struc-
tural and biological questions. Q3 scores are at best
only a crude indicator of this value, and cannot be
reliably used even to provide a cutoff to distinguish
models that are worthy of further examination from
those that are not (see section II). For the purposeT
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of judging a contest, where time is limited, they are
acceptable as a way of comparing the quality of
different predictions made for the same target.
However, as a Q3 score can be arbitrarily low
depending on the extent of noncore elements con-
tained in the reference experimental structure, a
cutoff score (for example, 68%) chosen without refer-
ence to evolutionary issues will be unsatisfactory in
many cases. The prediction discussed above for
phospho-â-galactosidase (from CASP1), for example,
had a Q3 score of only 65%, but nevertheless yielded
a correct core tertiary structural model.

Last, assessment choices can bias the assessment.
For example, the decision in the official assessment
in CASP2 to rank different prediction methods rela-
tive to each other by counting the absolute number
of targets for which each method generated aQ3 score
> 68% favors methods that make more predictions
over those that make fewer, without considering why
some predictors might choose not to make a predic-
tion for any particular target. Let us look at the
details of how these factors make the official assess-
ment of the ab initio predictions of CASP2 problem-
atic.

1. Different Participants Made Predictions for Different
Targets

To evaluate the relative merits of different predic-
tion methods, the methods must be tested in parallel
on the same set of prediction targets. The hope in
CASP2 was that a specific list of targets suitable for
ab initio prediction would provide this set, and that
all methods would be applied to all members of this
set. This would enable the different methods to be
directly compared.
For a variety of reasons, not all participants in the

CASP2 project predicted conformation for all targets.
Somewhat trivially, participants were constrained by
time and resources in their selection of prediction
targets, with manual and transparent methods obvi-
ously more constrained than automated methods. For
example, Bazan provided an outstanding prediction
for the secondary structure of target T0011 by a
process that involved manual analysis of neural
network data and other inputs. He then converted
his secondary structure prediction into a largely
correct model for the tertiary structure of the protein.
It is difficult to imagine a single individual being able
to repeat an analysis of such depth on 16 targets.
This does not mean that Bazan’s approach was
inferior to that of the automated approaches. But
the official assessment could not rate his approach
highly because it generated only a single successful
prediction, and multiple successful predictions were
required to attract a positive evaluation from the
assessors.
Perhaps more trivially, if a tool were applied in a

collaboration, where different members of the col-
laborative team submitted predictions under differ-
ent predictor numbers, this would diminish the
number of predictions any individual participant
would be credited for. This would decrease the
likelihood that the collaboration would be recognized
favorably by an assessment that favored large num-
bers of predictions submitted under a single predic-
tor. In CASP2, such collaborations existed, for
example the collaboration among Cohen, Gerloff,
Benner, Turcotte, and Joachimiak (the COBEGETJ
team), which involved a work done in San Francisco,
Florida, and Switzerland.

Table 11. The Predictors and Their “Predictor Numbers” in the CASP2 ab Initio Project

predictor number predictor predictor number predictor

1 ABAGYAN 60 ROSE
8 AVBELJ 61 ROST
9 BAKER 67 SERVER DSC MULT
11 BAZAN 68 SERVER GOR
12 SOLOVYEV 68 SERVER GOR
18 COHEN 69 SERVER NNPREDICT
23 EISENBERG 69 SERVER NNPREDICT
28 FINKELSTEIN 70 SERVER NNSSP MULT
33 GOLDSTEIN 71 SERVER PREDICTPROTEIN
37 HUBBARD 72 SERVER PREDICTPROTEIN SINGLE
38 JAAP 73 SERVER SSPRED
41 JONES 74 SERVER SSP MULT
48 LENGAUER 76 SHESTOPALOV
50 MARSHALL 78 SMITH
51 MOULT 80 STERNBERG
52 MUNSON 81 BENNER
53 MURZIN 83 TAYLOR
55 OSGUTHORPE 88 VALENCIA

Table 12. Predictions for CASP2 Targets174

target
no. of

attempts
max
Q3, %

group with
highest score groups with Q3 g 68

T002 9 76 12 12,38,61
T004 24 83 80 28,38,52,53,61,80,88
T005 15 73 37 18,37
T010 7 70 61 61
T011 14 74 61 11,18,61,80,88
T012 7 92 1 1,12,38,52,61,80
T014 20 80 61 12,38,52,61,80
T016 8 84 80 12,37,38,52,53,61,80
T020 19 80 70 12,18,33,37,61,71
T022 8 72 12,61 12,33,38,52,61,80
T030 33 66 61
T031 22 66 12
T032 8 80 88 52,88
T037 20 83 12 9,12,18,37,38,61,67,

71,80,88
T038 16 76 70 12,33,61,69,70,74,80
T042 28 90 61 9,12,18,23,38,41,50,

51,53,61,67,71,
72,12,80,81
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In several cases, targets in the CASP2 ab initio list
were found during the course of the project to be
inappropriate for an ab initio prediction exercise. For
example, cryptogein was entered as a target for the
ab initio competition (target number T0032) and
predictions for it were recorded and officially scored.
Gerloff, a member of the COBEGETJ team, realized
while considering this target that a secondary struc-
ture of the protein had already been published.321 The
conference organizers were informed, the information
was distributed via CASP2-Newsflash, and the COBE-
GETJ team did not submit a prediction for target
T0032. Several groups using automated tools did.
Other targets were considered to be inappropriate

for an ab initio prediction because a homolog was
suggested to be in the crystallographic database,
making the target more appropriate for homology
modeling. For example, the group submitting threo-
nine deaminase (CASP2 target T0002) indicated that
it might be a homolog of the â subunit of tryptophan
synthase, a protein with a crystal structure in the
PDB (PDB entry number 1WSY-B). Several contes-
tants considered this to be an indication that threo-
nine deaminase was not an appropriate target for the
ab initio effort and did not submit predictions.
Some of the targets for the ab initio phase of the

CASP2 contest were also poorly suited for evolution-
based predictions. As discussed at length in section
V, an evolution-based structure prediction will be
more accurate for families with more sequences
having greater overall evolutionary divergence. If a
family has multiple members, but the sequences of
those members are all very similar, an evolution-
based analysis is little better than a prediction made
with a single sequence.
As CASP2 was not an explicit test of evolution-

based methods, these considerations did not influence
the selection of targets for the ab initio portion of the
contest. Participants making transparent predictions
using evolution-based methods therefore generally
examined each of the targets to determine the
number and evolutionary divergence of homologs
before making a prediction, and did not make a
prediction if the family contained too few proteins or
proteins with too little divergence. Thus, T0014 had
only five homologs, too few to support a strong
evolution-based structure prediction. Targets T0010
and T0030 had only three identifiable homologs,
T0031 had only two, T0022 had only one, and T0038
had none. Thus, those making transparent predic-
tions using evolutionary analyses generally did not
make predictions for these targets.
After excluding CASP2 targets having a homolog

with a known structure, targets whose experimental
structures had already been published, and targets
with few homologs in the database, only six targets
remained suitable for ab initio prediction using
evolution-based analyses: fibrinogen (T0005), heat
shock protein 90 (T0011), procaricain (T0012), fer-
rocheletase (T0020), calponin (T0037), and NK-lysin
(T0042). As a rule, those using transparent evolu-
tion-based methods made predictions for some set of
these targets, while automated tools made predic-
tions for more targets. This gave transparent, evolu-
tion-based methods an advantage, as they tended to

select targets more suited for their prediction meth-
ods. On the other hand, the decision in the assess-
ment to rank methods based on the absolute number
of predictions made favored those who made as many
predictions as possible. As discussed below, this
created artifacts in the evaluation.

2. The Q3 Score

Another problem in the official evaluation was the
heavy reliance on Q3 to score the predictions. As
noted above, use of the Q3 score is an understandable
expedient when judging a prediction project under
time constraints. As the project is now completed,
we can now at leisure examine the results to see
whether the limitations in theQ3 score had an impact
on the overall value of the assessment.
As discussed at length in section II, the Q3 score

for a “perfect” prediction can be arbitrarily low,
depending on the fraction of the experimental struc-
ture that represents inserted elements relative to the
core. The prediction of phospho-â-galactosidase, from
the CASP1 project, provides a good illustration of this
point.79 The Q3 obtained for this prediction was only
65%; it would therefore have been excluded using the
official criteria applied in CASP2. Nevertheless, the
prediction was adequate to build a correct low-
resolution model of the tertiary structure of the
conserved core. This was possible because the mis-
takes that generated the “low” Q3 score were concen-
trated in noncore regions.62,79 Thus, the relevant
issue in evaluating a consensus prediction is the
number of serious mistakes (mistaking core helices
for strands and core strands for helices) it contains.
A similar circumstance arose in the CASP2 project.

The BENNER prediction of fibrinogen had a Q3 score
of 65%, again too low to be identified using the official
criteria. As with phospho-â-galactosidase, the mis-
takes were concentrated in noncore regions (see
below), making the prediction useful despite its low
score (see below).
As discussed in section II, no single number can

accurately reflect the value of a secondary structure
prediction. If one is desired, the preferable one would
count the number of core secondary structural ele-
ments that are successfully identified. The overlap
of the predicted and experimental secondary struc-
tural elements is not especially critical, provided that
the correct number and type is obtained. No “over-
lap” evaluation tool was applied in CASP2; the Sov
tool, which scores for the amount of overlap in
predicted and experimentally assigned segments,75
perhaps came the closest. In the CASP2 project,
when Sov is used instead of Q3, the list of “good”
methods for predicting secondary structure expands
from the four cited in the official evaluation (ROST,
JAAP, SOLOVYEV, STERNBERG) to include three
more (VALENCIA, BAZAN, and COBEGETJ).
An intriguing phenomenon lies behind this obser-

vation. Inspection of the outputs from the neural
network automata shows that these tools routinely
have Q3 scores 3-5 percentage points higher than
their Sov scores. In contrast, the Q3 and Sov scores
in the transparent COBEGETJ predictions are ap-
proximately identical. This phenomenon may arise
because the neural network was trained to produce
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high Q3 scores, while the transparent predictors are
primarily concerned with getting the number, order,
and types of secondary structure segments correct.
It is axiomatic that a tool will generate higher scores
in tests for which it is optimized.

3. Evolution-Based Assessments of the CASP2 Project
With these considerations in mind, we can offer

alternative evaluations of the CASP2 project. The
first several differs from the official evaluation simply
by using Sov scores rather than Q3 scores. The tool
credits for each target the highest Sov score, together
with other tools that produce an Sov score within
seven percentage points of the highest score for this
target. The second expedient reflects the fact that
the highest attainable Sov score depends in part on
the extent to which secondary structure has diverged
within a family of homologous proteins. The results
are collected in Table 13, which shows that prediction
tools fell into two categories: those that produce Sov
scores that rank highly on occasion and those that
do not.
Past this division, little more can be said about the

relative merits of different methods from these scores.
First, the Sov score does not distinguish between core
and noncore secondary structural elements. For this
reason, it is possible to have a prediction with a high
Sov score that makes all of its mistakes in core
segments that is less valuable than an alternative
prediction with a lower Sov score that makes its
mistakes in noncore regions (see section II above).
All of the strong methods provide Q3 and Sov scores

approaching the maximum possible for a consensus
prediction given the ambiguities in the reference
structure and the fact that secondary structure
diverges during divergent evolution (section II). To
ascertain whether any individual prediction method
scoring in this range is satisfactory for further
structural modeling, or as part of a postgenomic
analysis of evolution or function, one must learn
whether the 25% “mistakes” are serious or not.
Further, the methods evaluated in Table 13 are

tested on different sets of targets. As noted above,
this can easily generate meaningless evaluations. We
can, however, provide an improved evaluation based
on a more limited set of target proteins, one where
the leading methods all made predictions in parallel.
For example, five of the strongest secondary structure
prediction tools all made predictions for five targets
in common: T0004, T0011, T0020, T0037, and T0042.
On these five proteins, the best values of Sov are (in
order of decreasing Sov) ROST (75.8) > SOLOVYEV
(73.4) > COBEGETJ (72.6) > STERNBERG (67.5)
> JAAP (66.5). From this, one draws the conclusion
that when the best transparent and nontransparent
methods are compared on the same set of targets,
they perform equally well.
Of course, one might wish not to exclude those

groups that made strong predictions generally, but
for some reason omitted one of the five targets that
the other methods predicted in parallel. It turned
out that there was no predictor who fell in this
category. VALENCIA, however, predicted three of
these targets (T0004, T0011, and T0037) with an Sov
score of 72.3%. For these three targets, the other
methods had scores as follows: ROST (72.4), SO-
LOVYEV (67.9), COBEGETJ (65.4), STERNBERG
(71.0), and JAAP (61.6). The difference, of course,
reflects a strong score by VALENCIA for T0004 and
weak scores by several of the other methods for this
target.
Further, results both from CASP1, CASP2, and the

literature make clear that secondary structure pre-
diction methods can now provide nearly perfect
predictions excluding internal helices, active-site
regions, and short surface strands, as well as an
understanding of why this must generally be so. As
a result, no prediction tool is likely to yield higher
scores reliably. The question needing an answer at
this point is whether the predictions with this level
of mistake can be useful nevertheless. To answer
this question, one must attempt to use the predictions
in a bona fide prediction setting. CASP2 provided
several examples where this was done.

D. Examination of Specific Predictions

As in the discussions in previous sections, we
provide a set of figures that allows the reader to
examine individual predictions individually. For
each, an experimental secondary structure was as-
signed by DSSP. Segment overlap (Sov) and three
state residue (Q3) scores were taken directly from the
CASP2 Web site where available; otherwise they
were calculated directly. Core strands in the second-
ary structure were assigned whenever possible using
HERA plots;322 a core strand is defined as one that

Table 13. Number of Predictions Having Sov within
7% of Top Score

fraction counts
average
Sov method

1.000 2 out of 2 77.7 BENNER
0.600 9 out of 15 70.4 ROST
0.500 2 out of 4 73.2 VALENCIA
0.500 8 out of 16 67.6 STERNBERG
0.500 8 out of 16 66.7 SOLOVYEV
0.500 1 out of 2 60.3 BAZAN
0.375 6 out of 16 67.4 JAAP
0.375 3 out of 8 59.4 GOLDSTEIN
0.333 2 out of 6 69.9 COHEN
0.333 2 out of 6 68.8 SERVER PREDICTPROTEIN
0.333 2 out of 6 67.1 HUBBARD
0.250 1 out of 4 58.5 FINKELSTEIN
0.200 1 out of 5 66.1 SERVER DSC MULT
0.200 2 out of 10 64.9 MUNSON
0.167 1 out of 6 62.0 SERVER NNSSP MULT
0.140 1 out of 7 50.5 ABAGYAN
0.111 1 out of 9 60.9 MURZIN
0.000 0 out of 1 82.8 EISENBERG
0.000 0 out of 1 69.2 JONES
0.000 0 out of 2 62.8 SMITH
0.000 0 out of 2 60.7 MARSHALL
0.000 0 out of 6 53.9 SERVER SSPRED
0.000 0 out of 5 53.3 SHESTOPALOV
0.000 0 out of 6 51.8 SERVER GOR
0.000 0 out of 6 51.2 SERVER SSP MULT
0.000 0 out of 6 50.8 SERVER NNPREDICT
0.000 0 out of 3 49.4 TAYLOR
0.000 0 out of 4 47.5 ROSE
0.000 0 out of 6 44.7 MOULT
0.000 0 out of 1 43.7 BAKER
0.000 0 out of 4 39.1 LENGAUER
0.000 0 out of 1 16.4 OSGUTHORPE
0.000 0 out of 1 15.7 AVBELJ
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has hydrogen-bonding interactions to two other
strands on both edges.

1. Threonine Deaminase (T0002)
Approximately 15 threonine deaminase homologs

with PAM distances less than 150 were available
when threonine deaminase was announced as a
CASP2 target. Accordingly, ab initio evolution-based
prediction tools were expected to perform well. Thre-
onine deaminase was announced, however, as a
protein that might be homologous to the â subunit
of tryptophan synthase. This was based on the
knowledge that the protein had a pyridoxal cofactor
and the observation of a conserved Lys and a Gly-
rich loop at an appropriate position (Travis Gal-
lagher, personal communication). Several ab initio
prediction groups therefore assumed that the target
was more appropriate as a homology modeling target.
Nevertheless, a number of other predictors treated
this as an ab initio target and submitted predictions.
In any case, DARWIN failed to identify significant
sequence similarity between the two protein se-
quences, and a CLUSTALW alignment failed to
correctly align secondary structural elements. A
structure-based alignment yielded only ∼15% se-
quence identity, well into the “twilight zone”. It is
evident that a secondary structure prediction would
have been useful for predicting long distance homol-
ogy in this case, but no such prediction was explicitly
made as part of the CASP2 project.

Figure 48 shows the predictions made for this
protein. Sov and Q3 scores were quite good for the
strongest automated neural network and statistical
contenders, including the neural network developed
by Rost et al.,218 the method of Solovyev and Sala-
mov,323 and the method of King and Sternberg.106

With coordinates now available (we are indebted
to Dr. T. Gallagher for sending us coordinates prior
to publication), we can apply a more useful scoring
system that focuses on core strands that come
together to form â sheets in the protein. For a core
strand to be “correctly predicted” requires that a
strand be assigned between flanking secondary struc-
tural elements also assigned correctly, provided that
at least one amino acid overlaps in the predicted and
experimental secondary structural elements. This
reflects the experience with transparent predictions,
where successful tertiary structural models can be
built if the number and nature of the secondary
structural elements are assigned correctly. Segment
overlap is less important for this purpose. In the
event that both helix and strand residues are pre-
dicted for residues assigned to a strand, then the
prediction is counted correct if the predicted strand
covers g50% of the experimental strand. When an
edge strand is missed, and a predicted helix intrudes
on the strand, it is counted as wrong, except when
the helix is part of a correctly assigned adjacent helix,
in which case the edge strand is counted as being

Figure 48. Sequence and predictions from the CASP2 site and experimental secondary structure324 for threonine
deaminase, E. coli (514 residues), target T0002, THD1 ECOLI, P04968. Experimental secondary structural assignments,
calculated with DSSP and STRIDE, were taken from the CASP2 web site. Key: E, â strand; H, R helix; G, 310 helix.
Alignment with tryptophan synthase (1wsy) was done using HERA plots of hydrogen bonding in such a manner as to
emphasize the similarity in secondary structure motifs. The number in parentheses (n) indicates the prediction was a
weighted average of n predictions. Serious mistakes and omissions are underlined. The prediction with the highest Sov O
is shown. For each prediction, Sov O and Q3 for the residues with no homology to tryptophan synthase are listed in order
of descending Sov O: SOLOVYEV, 78.8, 75.8; ROST, 78.0, 69.8; JAAP, 74.8, 69.2; STERNBERG, 73.8, 66.5; MUNSON,
67.9, 61.5; FINKELSTEIN, 59.4, 54.9; MURZIN, 53.7, 60.2 from coordinate model (fold recognition); ABAGYAN (2), 43.4,
43.1.
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“missed”. We recommend that CASP3 use this
scoring system for proteins that have â sheets, as it
provides an accurate view of the value of the second-
ary structure model as the starting point for as-
sembling a tertiary structural model.
It is worth looking closely at both the multiple

alignment and the structure itself to understand the
challenges presented to the evaluator attempting to
devise an automated tool for scoring the relative
merits of prediction methods. In the structure actu-
ally determined, the threonine deaminase fold is
constituted into three domains. The first domain

includes residues 1-315, and is clearly independent
as a folding unit. The second and third include
residues 316-418 and 419-493 respectively, with a
contact made between the two domains when resi-
dues 365-367 form an edge strand of the sheet that
forms the core of the third domain.
The domains in threonine deaminase are not only

domains in the structural sense. They are also
evolutionary modules, able to disassociate and wan-
der freely during divergent evolution. In Figure 49,
sequences thd2 ecoli and ykv8 yeast have only the
first domain, and are missing the second and third.

Figure 49. Multiple sequence alignment for the threonine deaminase family from the PHD server.208 Sequences are as
follows: thd1 ecoli (P04968), threonine deaminase; thd1 salty (P20506), threonine deaminase; thd1 haein (P46493),
threonine deaminase; thd1 burce (P53607), threonine deaminase; thdh yeast (P00927), threonine dehydratase PRE;
thd1 lyces (P25306), threonine deaminase; thd1 soltu (P31212), FRAGMENT; thd1 bacsu (P37946), threonine deaminase;
thd1 myctu (Q10766), threonine deaminase; thd2 ecoli (P05792), threonine dehydratase CAT; ykv8 yeast (P36007),
hypothetical 34.9 KD prot; thd1 corgl (Q04513), threonine deaminase; thd1 lacla (Q02145), threonine deaminase.
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The proteins thd1 myctu and thd1 corg1 have the
first two domains but are missing the third. In these
two proteins, residues 370-384 in the second domain
are deleted; these are the ones that make contact to
the third domain, and represent an interesting (if
single) case of compensatory covariation. The regu-
latory issues related to this are beyond the scope of
the discussion. For the purposes of predicting struc-
ture, however, it should noted that predictions in the
first domain are made from 14 sequences with wide
evolutionary divergence, the second domain from 12
sequences, and the final domain from 8 sequences.
Any method that exploits evolutionary divergence
should do better in the first domain than the second,
and on the second domain than the third.

Figure 48 shows that this is the case. The first
domain contains seven core strands. With seven
predictors making assignments, 49 segment assign-
ments were made in all. The seven core strands were
identified correctly in every one of these, except one,
where a core strand was misassigned as a helix. In
the third domain, however, with eight predictors and
three core strands in this domain, seven of the
assignments seriously mistake a core strand as a
helix; two more missed. As discussed in detail above,
the quality of an evolutionary model is expected to
be based strongly on the nature of the input, the
number of homologous sequences, their overall evo-
lutionary divergence, and the quality of the multiple

Figure 50. Sequence and predictions from the CASP2 site and experimental secondary structure329 for polyribonucleotide
nucleotidyltransferase, S1 motif, E. coli (84 residues), target T0004, 1sro PO5055, PNP ECOLI. Experimental secondary
structural assignments, calculated with DSSP, were taken from the CASP2 web site. Key: E, â strand; H, R helix. The
number in parentheses (n) indicates the prediction was a weighted average of n predictions. The prediction with the highest
Sov O is shown. For each prediction, Sov O and Q3 are listed in order of descending Sov O: ROST, 84.5, 71.1; STERNBERG,
82.5, 82.9; VALENCIA, 78.5, 68.9; MURZIN, from coordinate data, 67.1, 72.4; FINKELSTEIN (2), 66.7, 66.4; MUNSON
(5), 62.9, 60.0; COHEN, 61.4, 49.3; JAAP, 60.6, 68.4; MOULT, 60.3, 64.5; SOLOVYEV, 57.0, 55.3; ROSE, 55.7, 54.8;
ABAGYAN (2), 39.0, 56.1.
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alignment. Threonine deaminase illustrates this
point within a single prediction target.

One can, of course, calculate an aggregate score for
the entire threonine deaminase protein (the CASP2

Figure 51. Residue-by-residue secondary structure prediction for polyribonucleotide nucleotidyltransferase S1 motif. The
SIA Predict records assignments to the surface (S, s, e), interior (I, i, b), or the “active site” (A, a). Automated assignments
from DARWIN are given. Where manual assignments differ, these are indicated to right of the automated assignments.
Services of DARWIN are available by server on the Web (URL http://cbrg.inf.ethz.ch/). Where the multiple alignment is
adjusted, and at the ends, the surface/interior assignments may no longer correspond precisely to the output generated by
the server. Residues participating in parsing strings are underlined. Secondary structure is indicated by E (strong strand
assignment), e (weak strand assignment), H (strong helix assignment), and h (weak helix assignment). Sequences, designated
using single letters, are from the SwissProt database, as summarized below; sequence “a” is the target sequence: (a)
(P05055) Pnp ecoli polyribonucleotide nucleotidyltransferase (EC 2.7.7.8) (polynucleotide phosphorylase).Escherichia coli.
Seq# 617-693 ) Ali# 618-704 ) Target# 1-77. (b) (P41121) Pnp pholu polyribonucleotide nucleotidyltransferase (EC
2.7.7.8) (polynucleotide phosphorylase) (Cap87k). Photorhabdus luminescens (Xenorhabdus luminescens). Seq# 617-693
) Ali# 618-704. (c) (P44584) Pnp haein polyribonucleotide nucleotidyltransferase (EC 2.7.7.8) (polynucleotide phospho-
rylase). Haemophilus influenzae. Seq# 616-692 ) Ali# 618-704. (d) (P37560) Yabr bacsu hypothetical 14.2 kD protein in
Divic-Spoiie intergenic region. Bacillus subtilis. Seq# 1-77 ) Ali# 618-704 (hypothetical protein). (e) (P38494) Rs1h bacsu
30S ribosomal protein S1 homolog. Bacillus subtilis. Seq# 183-259 ) Ali# 618-704 (2 repeats are described in SwissProt,
both match). (f) (P38494) Rs1h bacsu 30S ribosomal protein S1 homolog. Bacillus subtilis. Seq# 268-345 ) Ali# 618-704
(see above). (g) (P46836) Rs1 mycle 30S ribosomal protein S1.Mycobacterium leprae. Seq# 289-366 ) Ali# 618-704 (best
of an unknown number of repeats, SwissProt information is missing). (h) (P24384) Pr22 yeast pre-mRNA splicing factor
RNA helicase Prp22. Saccharomyces cerevisiae (bakers’ yeast). Seq# 173-253 ) Ali# 618-704. (i) (P46837) Yhgf ecoli
hypothetical 81.4 kD protein in Greb-Feoa intergenic region. Escherichia coli. Seq# 613-690 ) Ali# 618-704 (hypothetical
protein, conceptual translation) (best of an unknown number of repeats, SwissProt information is missing). (j) (P29344)
Rr1 spiol 30S ribosomal protein S1, chloroplast precursor (Cs1). Spinacia oleracea (Spinach). Seq# 256-332 ) Ali# 618-
704 (only match (3rd) of 3 repeats as described in SwissProt). (k) (P14129) Rs1 rhime 30S ribosomal protein S1. Rhizobium
meliloti. Seq# 193-269 ) Ali# 618-704 (4 repeats are described in SwissProt, 1-3 match). (l) (P14129) Rs1 rhime 30S
ribosomal protein S1.Rhizobiummeliloti. Seq# 278-356 ) Ali# 618-704 (see above). (m) (P14129) Rs1 rhime 30S ribosomal
protein S1. Rhizobium meliloti. Seq# 365-443 ) Ali# 618-704 (see above). (n) (P02349) Rs1 ecoli 30S ribosomal protein
S1. Escherichia coli. Seq# 187-263 ) Ali# 618-704 (4 repeats are described in SwissProt, 1-2 match). (o) (P02349) Rs1 ecoli
30S ribosomal protein S1. Escherichia coli. Seq# 272-350 ) Ali# 618-704 (see above). (p) (P46228) Rs1 synp6 30S ribosomal
protein S1. Synechococcus sp. (strain Pcc 6301). Seq# 191-257 ) Ali# 618-704 (only match (3rd) of 3 repeats as described
in SwissProt).
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scores listed in the figure captions). One might set
about refining a neural network in an attempt to
improve the aggregate. To do so would misunder-
stand the underlying problem: the reliability of
evolution-based methods for predicting conformation
of protein depends on the diversity of input. For a
score to be informative about the underlying quality
of a prediction method applied to threonine deami-
nase, three scores must be delivered, one for each
domain.

2. Polyribonucleotide Nucleotidyltransferase S1 Motif
(T0004)

Polyribonucleotide nucleotidyltransferase enhances
translation initiation in gram negative bacteria such
as Escherichia coli. It interacts both with the ribo-
some and the mRNA. A polypeptide segment ∼100
amino acids long is repeated in the polypeptide chain,
with the C-terminal segment containing the RNA-
binding capacity.325 The N-terminal region binds to
the ribosome.326 A single copy of the motif is found
in other RNA-binding proteins,327 and the evolution
of ribosomal protein S1 and its homologs has been
thoroughly analyzed.328

Figure 50 collects predictions made within the
CASP2 project for the S1 motif of polyribonucleotide
nucleotidyltransferase. Over a dozen rather diver-
gent homologous sequences were available for this
family (including repeats within a single entry).
These have diverged substantially. Accordingly,
evolution-based predictions are expected to be good.
Figure 50 confirms these expectations.
Within the CASP2 project, Inna Dubchak sug-

gested that the target might have a homolog of
known conformation in the crystallographic database,
1csp, the cold shock protein CSP from Bacillus
subtilis. This was the top fold recognition for T0004
(S1 motif). A BLAST search identified two fragments
of the protein (score 35 each) when probed with the
target sequence. The sequences of the proteins and
the experimentally recorded secondary structure are
included in Figure 50. It is clear that the significance
of the similarity between the two proteins was
insufficient to be more than suggestive of homology,
and many (evidently) nonhomologous proteins gave
higher BLAST scores. Nevertheless, the secondary
structure of the two fragments of 1csp, the PDB entry
for the structure of the presumed homolog, was
correctly aligned, and the overall fold was quite
similar. Thus, T0004 should be viewed as a success
for threading methods.
This short fragment was also the target of an ab

initio prediction using the energy minimization
method of Srinivasan and Rose.129 The secondary
structure assignment was not bad, although the
overall fold did not resemble the experimental struc-
ture closely. The team of Olmea, Pazos, and Valencia
also predicted residue-residue contacts in this pro-
tein, and the official evaluation for the CASP2 ab
initio project designated this tool as the most suc-
cessful for this purpose.174

Since the protein is small, we can easily examine
the prediction closely to gain insight into evolution-
based structure methods. Figure 50 shows the

multiple alignment and evolutionary analysis for the
protein, as well as the experimentally derived sec-
ondary structure for a single protein. With only a
single experimental structure, we must guess which
elements belong in a consensus model. For example,
the experimental structure assigned a four residue
helix (Figure 50). Helices so short are rarely con-
served, and only rarely an appropriate part of a
consensus model. The helix is not conserved in the
cold shock protein. Among the high-scoring predic-
tions, only the ROST prediction identified it, although
with a low probability. To test the stability of the
ROST assignment, the same sequences were submit-
ted to the PHD server six months after the conclusion
of the CASP2 project; the PHD server failed to
identify the helix (Figure 50, “resubmit”). Thus, the
helix should not be part of a consensus model.
Nevertheless, it had an impact on the score. The
ROST prediction gained five percentage points in its
Q3 score based on its prediction of this segment.
The experimental secondary structure also has a

short strand, containing a single residue. When the
coordinates were resubmitted to DSSP to generate
HERA plots,322 this strand was not found. In the cold
shock protein, however, an edge strand four residues
long is found at the corresponding position. Further,
the structure for T0004 places an edge strand anti-
parallel to the previous strand in this region. Thus,
if this strand is missed, it will be more difficult to
recognize the parallel relationship between the strands
preceding it and following it. This implies that a
consensus model should contain a strand.
A transparent prediction was made by the COBE-

GETJ team (listed as COHEN in Figure 50) was
made for the S1 motif. The transparency provides
clues to why two serious mistakes were made. Each
misassigned a strand as a helix. For the first helix,
the DARWIN tool identified surface and interior
residues in the sequence Is?sI(i/s)SII (Figure 51,
positions 626-633, I ) strong interior, i ) weak
interior, S ) strong surface; s ) weak surface).
Placing the residues marked as “?” and “i/s” on the
surface yields a region with 3.6 residue periodicity,
indicative of a short helix. PHD made different
surface and interior assignments for the first part of
this segment, designating these as “bebebe” (where
“b” means <9% exposed, while e means >36% ex-
posed). Instead of 3.6 residue periodicity indicative
of a helix, these assignments give an alternating
periodicity indicative of a strand. Thus, the differ-
ences in the surface/interior assignments account for
the different secondary structure predictions made
by the two methods.
Why are the accessibility predictions different for

two critical positions, 628 and 631? At position 628,
a Gly is conserved in all proteins. The PHD server
assigns this pattern as indicative of an interior
position. Empirically, a conserved Gly is known not
always to be “interior”, but the interior assignment
here gives a correct secondary structure prediction.
Further, the ROST prediction is based on an align-
ment containing 21 sequences (Figure 52); the CO-
HEN prediction is based on an alignment that
included only 16 sequences.
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The second helix mispredicted by COHEN is dis-
cussed at length in a manuscript submitted to
Proteins as a prediction report (D L. Gerloff, F. E.
Cohen, and S. A. Benner, unpublished) prior to the
CASP2 project. The manuscript was unpublished on
the advice of a referee, who objected to the publica-
tion of a prediction for a CASP2 target. The mispre-
diction lies in a region of high conservation of the
protein sequence. The conservation extends to the
cold shock proteins. This is a region diverging under
unusual functional constraints, the “active site” of the

protein. Gerloff, Cohen, and Benner recognized this
problem and suggested that this was either an
internal helix or an active-site segment with unpre-
dictable secondary structure. In fact, the segment
is an edge strand involved in binding to RNA.
As discussed above, secondary structure predic-
tion in regions of the active site is necessarily diffi-
cult by any method, as selection of amino acids is
determined in this region by factors other than
propensities to create particular secondary struc-
tures.

Figure 52. Multiple sequence alignment from the PHD server208 for polyribonucleotide nucleotidyl transferase S1 motif.
Organisms are pnp ecoli (P05055), phosphorylase (PNPASE); pnp pholu (P41121), phosphorylase (PNPASE); pnp haein
(P44584), phosphorylase (PNPASE); rs1h bacsu (P38494), 30S ribosomal protein S1; pnp bacsu (P50849), phosphorylase
(PNPASE); yabr bacsu (P37560), hypothetical 14.2 kD protein; rs1 human (P50889), 40S ribosomal protein S1; rs1 rhime
(P14129), 30S ribosomal protein S1; rs1 mycle (P46836), 30S ribosomal protein S1; rr1 spiol (P29344), 30S ribosomal
protein S1; yhgf ecoli (P46837), hypothetical 81.4 kD protein; pr22 yeast (P24384), pre-MRNA splicing factor; rs1 synp6
(P46228), 30S ribosomal protein S1; rs1 prosp (P14128), 30S ribosomal protein S1; rs1 ecoli (P02349), 30S ribosomal
protein S1; rr1 porpu (P51345), chloroplast 30S ribosomal; rpoe sulac (P39466), DNA-directed RNA polymerase; rs1 chltr
(P38016), 30S ribosomal protein S1; rne ecoli (P21513), ribonuclease e; and rne haein (P44443), ribonuclease E.
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3. Gamma Fibrinogen C Terminus (T0005)

Figure 53 collects the secondary structure predic-
tions submitted for the CASP2 project for the C-
terminal segment of γ-fibrinogen. Independent of the
CASP2 project, Doolittle assembled a secondary
structure model for fibrinogen in 1992.131 To do so,
he applied the Kyte-Doolittle amphiphilicity tool,192
the transparent method of Benner and Gerloff91 and
the consensus Chou-Fasman and consensus GOR
tools together and produced a joint prediction. Doolit-
tle’s prediction is recorded in Figure 53 as well.
Further, the BENNER and COHEN predictions,
made jointly (the COBEGETJ prediction team) were
presented together with a full evolutionary analysis
of the family in published form.330
With 15-20 homologous protein sequences in the

protein family, divergence sufficient to sustain an
evolution-based structure prediction, and a variety
of predictions from many different methods, the
fibrinogen prediction is one of the most useful to come
from the CASP2 project.
Inspection of Figure 53 shows that in the first half

of the sequence, all of the predictions are quite good.
In contrast, all of the predictions appear to be worse
in the second half. Inspection of the transparent
predictions131,330 shows why the prediction is so
uneven. In the first part of the sequence, the
multiple alignment is of high quality. In the second,
the multiple alignment is poor. In the second half
of the protein, segments found in the target sequence
are deleted in homologs. This implies that secondary
structural elements assigned in these regions in the
experimental structure are not core elements, and

cannot be predicted by an evolution-based tool of any
kind. These are marked in Figure 53 with asterisks.
The relatively low Q3 and Sov O scores for this

prediction are attributable to the divergence of
secondary structure in this family of proteins and the
large amount of coil. As with threonine deaminase,
a single score loses the important information in
evaluating this target, and theQ3 score is inadequate,
even as a crude measure of prediction quality to be
used as a “cutoff”. So many of the segments evalu-
ated are not core that a 68% Q3 score is virtually
unattainable for a consensus prediction, even a
perfect one. Indeed, the only prediction to make the
68% cutoff is by STERNBERG.
Transparency was especially useful in understand-

ing the assignment of the third strand in the struc-
ture (the fourth secondary structural element in line
1 in Figure 53). As pointed out in Gerloff et al.,330
both a strand and a helix are consistent with patterns
of predicted exposure in this segment, the first
preferred based on simple analysis of the sequence
data, the second based on considerations of tertiary
packing. Gerloff et al. noted that both secondary
structural elements must be considered when build-
ing a tertiary structural model.330

4. Bactericidal Permeability-Increasing Protein (T0010)

Only four homologous sequences could be found in
the sequence database for T0010. The four sequences
come in two pairs. Each sequence in the pair is
separated by 50 PAM units, while the pairs them-
selves have diverged by ∼100 PAM units. Thus, this
target should not give good predictions using evolu-

Figure 53. Sequence and predictions from the CASP2 site and experimental secondary structure331 for γ-fibrinogen C
terminus, human (268 residues), T0005, 1fib, P02679, F1GB HUMAN. Experimental secondary structure (DSSP) were
from the CASP2 site. Key: E, â strand; H, R helix. Number in parentheses (n) indicates the prediction was a weighted
average of n predictions. The prediction with the highest Sov O is shown. For each prediction, Sov O and Q3 are listed in
order of descending Sov O: HUBBARD, 69.6, 65.9; BENNER, 63.3, 64.7; JAAP, 62.3, 62.9; COHEN, 62.1, 61.5; Doolittle,
54.3, 65.8; STERNBERG, 53.7, 69.4; SOLOVYEV, 50.8, 65.3; ABAGYAN, 47.1, 49.6; MOULT (4), 43.7, 49.5; MURZIN,
43.3, 51.1; LENGAUER, 39.0, 44.5. The Doolittle prediction was independent of CASP2, while the transparent predictions
BENNER and COHEN are discussed elsewhere.330 MOULT and MURZIN were derived from a coordinate model and are
fold-recognition based. The line marked with an asterisk (*) shows where the sequence is matched against gaps in a multiple
sequence alignments, where secondary structural elements assigned in the experimental structure are presumably not
conserved throughout the family.
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tionary-based tools. Further, the protein is big, with
456 amino acids. For whatever the reason, the Sov
and Q3 scores for this target were poor even in the
best prediction (61.8 and 64.3, by JAAP). Inspection
of Figure 54, which collects the secondary structure
predictions submitted for the bactericidal perme-
ability-increasing protein, shows the problems in
detail. In the N-terminal domain, which is the region
of the protein that binds lipopolysaccharides, the
predictions underestimate the lengths of the â strands
that distinguish the experimental secondary struc-
ture. None of this can be ascribed to divergence in
secondary structure, as the multiple alignment con-
tains no gaps. In the second half of the prediction, a
small number of strands are misassigned as helices.

5. HSP90 N-Terminal Domain (T0011)
With over 30 homologous sequences and substan-

tial evolutionary divergence, the N-terminal domain
of the heat shock protein 90 (HSP90) provides an
excellent target for evolution-based modeling. As
expected for such an input, the Q3 and Sov O scores
for evolution-based predictions were high. Figure 55
contains the secondary structure predictions and the
experimentally assigned secondary structure, with
core and edge strands assigned.
Considering issues related to scoring, the impor-

tance of distinguishing between mistakes in core and
noncore assignments is illustrated here. For ex-
ample, the GOLDSTEIN prediction misassigns a core
strand as a helix, while the MUNSON prediction
misassigns an edge strand as a helix. The two
misassignments score identically, but only the first
prevents assembly of a correct tertiary structural
model from the predicted secondary structural ele-
ments. Further, a three-residue helix (Figure 55, line
2) is assigned to the experimental structure. Such a
helix is, of course, less than a full turn, and is rarely
a core element. No tool predicts it, and the tools are
not deficient for not doing so. Likewise, the four

residue helices at the end of the first line and at the
start of line 4 are not significant, and the value of
predictions that do not predict them are not dimin-
ished.
The value of the predicted models for secondary

structure in this protein was illustrated by the
application of the models to predict tertiary structure
in the family, and the use of the tertiary structure
models to solve biochemical problems identified in the
literature of this family. This was done by two
participants in the CASP2 project, both who make
transparent predictions, the COBEGETJ team and
BAZAN.
The COBEGETJ team recognized that the pre-

dicted secondary structural elements for T0011 could
be mapped on the ATPase domain of gyrase (found
by SCOP browsing).333,334 The team obtained the
coordinates as a personal communication from D. B.
Wigley. Upon closer comparison of the predicted
tertiary structure model, based on the predicted
secondary structure elements and active-site assign-
ments, the COBEGETJ team concluded T0011 might
be a distant homolog of gyrase, was likely to adopt
the same fold except for an inserted hairpin structure
(residues 54-70) and a region (86-117) that forms
a lid in the gyrase structure.334

The model was then used to address a biochemical
question concerning HSP90 (target T0011). The
literature had not established by “wet” biochemical
experiments whether HSP90 bound ATP. Indeed, a
report issued just as the CASP2 project was running
stated that “highly purified Hsp90 does not bind
ATP”.335 The prediction identified an ATP-binding
site, however, and the COBEGETJ team drew the
correct conclusion that the protein did indeed bind
ATP.
The prediction and biochemical conclusions made

by the COBEGETJ team involved human interven-

Figure 54. Sequence and predictions from the CASP2 site and experimental secondary structure332 for bactericidal
permeability-increasing protein, human (456 residues), T0010, 1bpi, P17213, BPI HUMAN. Experimental secondary
structural assignments (DSSP) were taken from the CASP2 site. Key: E, â strand; H, R helix. For each prediction, Sov O
and Q3 are listed in order of descending Sov O: JAAP, 61.8, 64.3; FINKELSTEIN, 57.6, 64.7; ROST, 56.7, 69.5;
STERNBERG, 55.9, 60.3; MUNSON, 47.8, 53.9; SOLOVYEV, 43.8, 49.8; MURZIN, 43.5, 56.0, from coordinate model.
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tion. At noted above, several individuals in the field
have criticized such procedures as being unreproduc-

ible.65 Thus, it is interesting to note that the same
conclusions concerning secondary structure, tertiary

Figure 55. Sequence and predictions from the CASP2 site and experimental secondary structure for HSP-90 N-terminal
domain,337 S. cerevisiae (220 residues), T0011, PO2829, HS82 YEAST. Experimental secondary structural assignments,
calculated with DSSP, were taken from the CASP2 site. Key: E, â strand; H, R helix. The number in parentheses (n)
indicates the prediction was a weighted average of n predictions. The prediction with the highest Sov O is shown. For each
prediction, Sov O and Q3 are listed in order of descending Sov O: COHEN, 75.6, 68.1; ROST (2), 72.4, 74.5; VALENCIA,
72.1, 71.8; BAZAN, 70.3, 71.3; SOLOVYEV, 67.9, 69.4; STERNBERG, 66.4, 68.5; JAAP, 61.5, 65.7; GOLDSTEIN, 59.6,
62.5; MUNSON, 53.6, 64.4; ROSE (2), 49.5, 47.8; BAKER, 49.3, 52.0.
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structure, and biochemical behavior were derived
independently by Bazan. Bazan noted that he con-
ducted an exhaustive survey of Hsp90 homologs from
the nonredundant NCBI databases using the BLAST
server with Gonnet-Benner220 and Blosum45 and
30336 comparison matrices. These sequences were
collected and aligned with ClustalW to make Grib-
skov-type profiles, used to screen again for more
distant relatives. From both the BLAST and profile
searches, the human TRAP1 and C. elegans ORF
sequences (Genbank accession U12595 and U00036)
were incorporated to the profile. Next, a hypothetical
prokaryotic protein (SwissProt yd3m herau) was
found. The augmented profiles, and the MPSRCH
server (DISC in Japan) located a significant, albeit
faint, similarity to bacterial MutL proteins (involved
in DNAmismatch repair complexes) centering around
an Hsp90 conserved motif of DxGxG (aa 79-83 in
target). All MutL-like sequences were separately
harvested and aligned (including MLH1- and PMS1-
like proteins in eukaryotes, with some quite distant
homologs found as ORFs in the yeast genome) using
ClustalW. BLAST/profile searches next revealed two
interesting matches that had appeared as bottom-
type hits with the Hsp90 profile, each with a number
of bacterial sensor proteins from two-component
signaling pathways to central regions that correspond
to putative histidine kinase domains, and to the
N-terminal segments of bacterial gyrase subunit-B
sequences, also ATPase domains.334 Both of these
divergent families also preserve DxGxG motifs at
approximately the same spot as Hsp90s/MutLs, about
1/3 of the way into the chain; another centrally located
Gly-rich motif also cemented the relationship.
Bazan then writes that the growing multiple align-

ments were submitted to the PHD neural network
prediction server, and to the PSSP server at Baylor
implementing Solovyev’s SSP and NNSSP programs.
The Hsp90 and MutL predictions were quite similar,
with an R + â pattern of R-R-â-â-R-R-â-â-â-
â-R-â-â. The histidine kinase domains, smaller in

size feature a pattern of R-R-â-â-R-â-â-R-â-â
(minus two strands), while the gyraseB-like se-
quences (clustering a kinase) feature a pattern of
R-R-â-â-R-â-â-R-â-â (less two strands), while
the gyraseB-like sequences (clustering in prokaryotic
and eukaryotic families) are HSP90/MutL-like in
length, and give similar R + â patterns. Routine
checks were run of representative members of the
Hsp90, MutL, HisKin, and GyrB families with the
threading programs 123D (Alexandrov, NCI), topits
(Rost, EMBL), Pscan (Eloffson, Stockholm), and
ProFIT; none of these appeared to be similar, al-
though most of the hits were with R + â, or R/â folds.
Bazan then noted that the York group has earlier

solved the X-ray structure of E. coli gyraseB,334 but
that coordinates had not yet been deposited in the
PDB. The gyrase B fold is composed of two distinct
domains: an N-terminal novel ATPase structure
formed by a mixed â sheet with helices packed on
one side, and a C-terminal R/â fold related to domains
in ribosomal proteins and EF-G. The location of the
GyrB ATPase secondary structural elements cor-
respond quite well with the PHD/DSSP-derived
helices and strands.
From this template fold, Bazan deduced the likely

topology of the predicted HSP90 secondary structure,
as well as the strand pairing/contacts. Viewing the
sheet from above (looking down at the helices lying
on top of the sheet), the eight strands are in order
5-4-3-6-2-1-7-8, all antiparallel save for the 1-7 pair,
which are parallel to each other. Two helices precede
the first â strand, and then also form links between
strands 1-2 and 6-7. The more economical histidine
kinase sequences may lack the edge 5-4 hairpinsthis
looks to be allowed by the fold. The ATP-binding site,
as mapped by the presence of the ADPNP, is on top
of the sheet, protected by various loops and helices.
The noted Asp-Xxx-Gly-Xxx-Gly motif was observed
to lie in a loop just after strand 2; in the GyrB-
ADPNP complex, the Asp73 side chain interacts with

Figure 56. Sequence and predictions from the CASP2 site and experimental secondary structure for proregion of
procaricain, Carica papaya (107 residues),338 T0012, 1pci, EM PL:CPPRO. Experimental secondary structural assignments,
calculated with DSSP, were taken from the CASP2 site. Key: E, â strand; H, R helix. For each prediction, Sov O and Q3
were calculated for only the nonhomolgous residues and are listed in order of descending Sov O: MUNSON, 97.2, 91.7;
ABAGYAN, 97.2, 91.7; JAAP, 97.2, 88.9; STERNBERG, 92.0, 83.3; ROST, 86.1, 80.6; SOLOVYEV, 68.9, 75.0; and (for
residues 1-48) ABAGYAN, 97.2, 91.7; MUNSON, 97.2, 91.7, JAAP, 97.2, 88.9; STERNBERG, 92.0, 83.3; SOLOVYEV,
92.0, 75.0; ROST, 86.1, 80.6.
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Figure 57. Sequence and predictions from the CASP2 site and experimental secondary structure for 3-dehydroquinase,
Salmonella typhimurium339 (252 residues), T0014, P24670, AROD SALT1. Experimental secondary structural assignments,
calculated with DSSP, were taken from the CASP2 site. STRIDE assignments were not available. Key: E, â strand; H, R
helix. The number in parentheses (n) indicates the prediction was a weighted average of n predictions. The prediction
with the highest Sov O is shown. For each prediction, Sov O and Q3 are listed in order of descending Sov O: JAAP, 81.4,
77.8; ROST (2), 79.5, 79.5; SOLOVYEV (2), 79.4, 73.4; STERNBERG, 73.8, 73.8; MURZIN, 69.6, 69.0, from a coordinate
model; MUNSON (6), 67.1, 65.1; ABAGYAN, 54.2, 50.8; FINKELSTEIN, 50.1, 50.8; LENGAUER, 34.8, 42.5.
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the amino side group of the a loop just after strand
2; in the GyrB-ADPNP complex, the Asp73 side chain
interacts with the amino side group of the adenine

ring. Tyr109 H bonds to the N3 atom of the adenine
ring; while HSP90 has no equivalent Tyr at that
position, there is a totally conserved Lys98 residue

Figure 58. Sequence and predictions from CASP2 site and experimental secondary structure for peridinin chlorophyll
protein, Amphidinium carterae (312 residues),340 T0016, 1ppr, PCP1 AMPCA, P80484 P51872. Experimental secondary
structure from DSSP. Key: E, â strand; H, R helix. The number in parentheses (n) indicates the prediction was a weighted
average of n predictions. The prediction with the highest Sov O is shown. For each prediction, Sov O and Q3 are listed in
order of descending Sov O: SOLOVYEV, 86.4, 81.1; STERNBERG, 81.2, 84.3; JAAP, 76.3, 79.2; ROST, 75.1, 77.3; MURZIN,
72.2, 75.3, from coordinate model; MUNSON, 63.3, 71.2; HUBBARD (2), 53.4, 66.4.
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that could play a similar role. The phosphates in
ADPNP rest against a Gly motif in GyrB (Glys114,
-117, and -119); in HSP90, the equivalent Gly resi-
dues were proposed to lie at positions 118, 121, and
123.
As with the COBEGETJ team, Bazan drew from

his models the conclusion that HSP90 must bind to
ATP.
As an example where an ab initio prediction

generated a secondary structural model that was
sufficiently accurate to support a tertiary structural
model, and that the tertiary structural model was
useful for detecting long-distance homology and solv-
ing a problem concerning biological function, this
prediction was especially significant. As Dunbrack
et al. noted, the fact that two groups independently
reached the same conclusions indicates that the
problem was approached systematically, making it
probable that similar procedures can be implemented
in automated systems in the future.130

6. Procaricain (T0012)
With 17 homologs and a family that had undergone

evolutionary divergence of 120 PAM units, procaric-
ain was an excellent target for an evolution-based
prediction. Accordingly, predictions obtained by the
STERNBERG and ROST groups scored highly. An-
other factor contributing to the high quality of this
prediction was undoubtedly the fact that the protein
is entirely helical; empirically, these tools seem to
work well with proteins built from a single type of
secondary structural elements.
Virtually all of the secondary structure predictions

identified the three core helices correctly. The SO-
LOVYEV group, although it achieved a relatively low
three-state score, also identified three helices, with

the third significantly shifted. Figure 56 collects the
secondary structure predictions submitted for the
CASP2 project for procaricain. This protein was also
identified by the contest organizers as one that had
a homologous sequence with known 3D structure.
Residues 49-107 were shown to have homology to
the proregion of cathepsin B (rat and human). Ac-
cordingly, the scores were calculated for the non-
homologous part, the first two helices.

7. 3-Dehydroquinase (T0014)

With only six homologs and an evolutionary tree
spanning ∼200 PAM units, the dehydroquinase
target was marginal for an evolution-based structure
prediction. Given this fact, the predictions produced
by the JAAP, ROST, SOLOVYEV, and MUNSON
teams are quite impressive. Figure 57 collects the
secondary structure predictions submitted for the
CASP2 project for 3-dehydroquinase. As the coordi-
nates for the protein are not yet in the public domain,
we cannot assess the significance of the misprediction
of one strand in the first line of Figure 57, and the
overprediction of strands in the carboxy-terminal
segment of the protein.

8. Peridinin Chlorophyll Protein (T0016)

Peridinin chlorophyll protein is an all-helical pro-
tein. The family contains four members with only
15 PAM units of sequence divergence overall. This
would normally not be sufficient divergence to gain
the advantage that evolution-based predictions offer
over those based on a single sequence. Nevertheless,
both the SOLOVYEV and STERNBERG groups gave
excellent Sov O scores. Figure 58 collects the second-
ary structure predictions submitted for the CASP2
project for the peridinin chlorophyll protein family.

Figure 59. Sequence and predictions from the CASP2 site and experimental secondary structure for ferrochelatase, Bacillus
subtilis (320 residues),341 T0020, 1ak1, HEMZ BACSU, P32396. Experimental secondary structural assignments calculated
with DSSP. Key: E, â strand; H, R helix. The number in parentheses (n) indicates the prediction was a weighted average
of n predictions. The prediction with the highest Sov O is shown. For each prediction, Sov O and Q3 are listed in order of
descending Sov O: SERVER NNSSP MULT, 86.0, 80.1; GOLDSTEIN, 84.6, 76.0; SERVER PRREDICTPROTEIN, 82.3,
75.8; SOLOVYEV, 81.2, 71.9; COHEN, 79.9, 73.1; HUBBARD, 78.4, 78.0; JAAP, 78.4, 66.5; ROST, 75.7, 73.8;
SERVER DSC MULT, 75.5, 67.0; SHESTOPALOV (2), 74.4, 65.9; STERNBERG, 70.9, 67.4; SERVER SSPRED, 69.8,
60.2; SERVER SSP MULT, 68.1, 66.5; SMITH (fold recognition), 58.6, 58.8; SERVER NNPREDICT, 56.3, 61.5;
SERVER GOR, 51.4, 59.3; BAKER from coordinate model (fold recognition), 44.3, 42.0.
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9. Ferrochelatase (T0020)
The ferrocheletase family contains 12 proteins with

substantial evolutionary divergence, and is an excel-
lent candidate for an evolution-based prediction.
Accordingly, Sov O scores were high. Figure 59
collects the secondary structure predictions submit-
ted for the CASP2 project for ferrocheletase. A
transparent prediction (COBEGETJ) can be com-

pared with a neural network prediction (ROST) with
nearly identical Q3 scores. Each has a serious
mistake, where a helix in the experimental structure
was mistaken for a strand in the model, or vice versa.
To understand the significance of this comparison,

we must examine the multiple alignment in greater
detail. This is reproduced in Figure 60, together with
transparent predictions made by two experts (SB and

Figure 60. Residue-by-residue consensus secondary structure prediction for the ferrocheletase family prepared using the
transparent method. The SIA Predict records assignments of positions to the surface (S, s), interior (I, i), or near the
“active site” (A, a). Automated assignments are given, with the output generated by DARWIN. Services of DARWIN are
available by server to the user on the Web (URL http://cbrg.inf.ethz.ch/). Secondary structure is indicated by E (strong
strand assignment), e (weak strand assignment), H (strong helix assignment), and h (weak helix assignment). Sequences,
designated using single letters, are from the SwissProt database and Genbank, as below. Sequence “a” is the target sequence.
The column marked “Auto” contains output from the fully automated secondary structure prediction tool (Marcel Turcotte’s
SAINT). The columns marked “Manual” contain assignments from semimanual analysis of the same data by two experts
(Steven A. Benner and Dietlind Gerloff). Key: (a) (P32396) HEMZ BACSU ferrochelatase (EC 4.99.1.1) (protoheme ferro-
lyase) (heme synthetase). Bacillus subtilis. (b) (P22600) HEMZ BOVIN ferrochelatase precursor (EC 4.99.1.1) (protoheme
ferro-lyase) (heme synthetase) (fragment). Bos taurus (bovine). (c) (P22315) HEMZ MOUSE ferrochelatase precursor (EC
4.99.1.1) (protoheme ferro-lyase) (heme synthetase).Mus musculus (mouse). (d) (P22830) HEMZ HUMAN ferrochelatase
precursor (EC 4.99.1.1) (protoheme ferro-lyase) (heme synthetase). Homo sapiens (human). (e) (P42044) HEMZ CUCSA
ferrochelatase precursor (EC 4.99.1.1) (protoheme ferro-lyase) (heme synthetase). Cucumis sativus (cucumber). (f) (P42045)
HEMZ HORVU ferrochelatase precursor (EC 4.99.1.1) (protoheme ferro-lyase) (heme synthetase).Hordeum vulgare (barley).
(g) (P42043) HEMZ ARATH ferrochelatase, chloroplast precursor (EC 4.99.1.1) (protoheme ferro-lyase) (heme synthetase).
Arabidopsis thaliana (mouse-ear cress). (h) (P16622) HEMZ YEAST ferrochelatase precursor (EC 4.99.1.1) (protoheme
ferro-lyase) (heme synthetase). Saccharomyces cerevisiae (bakers’ yeast). (i) (P23871) HEMZ ECOLI ferrochelatase (EC
4.99.1.1) (protoheme ferro-lyase) (heme synthetase). Escherichia coli. (j) (P43413) HEMZ YEREN ferrochelatase (EC
4.99.1.1) (protoheme ferro-lyase) (heme synthetase). Yersinia enterocolitica. (k) (P43868) HEMZ HAEIN ferrochelatase
(EC 4.99.1.1) (protoheme ferro-lyase) (heme synthetase).Haemophilus influenzae. (l) (P28602) HEMZ BRAJA ferrochelatase
(EC 4.99.1.1) (protoheme ferro-lyase) (heme synthetase). Bradyrhizobium japonicum.

Bona Fide Predictions of Protein Secondary Structure Chemical Reviews, 1997, Vol. 97, No. 8 2825



2826 Chemical Reviews, 1997, Vol. 97, No. 8 Benner et al.



DLG) and by an automated version of the transpar-
ent evolution-based analysis (MT) known by the
acronym SAINT (Structure Assignment with INfor-
mative Transparency). The difficulty that the trans-
parent prediction has in identifying the first strand
arises because of a difficult alignment in this seg-
ment. The SAINT tool is fully automatic. In addition
to a prediction of the secondary structure, however,
it generates an output which explains why the
secondary structure prediction is made. Thus, it
combines the facility of an automated tool with the
informative nature of a transparent prediction. The
correspondence between the manual and SAINT-
generated predictions was quite good; indeed, the
SAINT prediction correctly identified the first strand
that the manual prediction misassigned.

10. L-Fucose Isomerase (T0022)
The fucose isomerase family contains only two

identifiable proteins with an evolutionary divergence
of only 40 PAM units. Thus, evolution-based meth-
ods are not expected to perform well in this protein.
The Sov O and Q3 scores are low, and no prediction
does well in the C-terminal half of the protein. The
predictions are all remarkably good on the amino
terminal end of the protein. Figure 61 collects the
secondary structure predictions submitted for the
CASP2 project for L-fucose isomerase.

11. Protein g3 (T0030)
Target T0030 has only four homologs, which come

as two pairs of proteins, the members of each pair
being essentially identical in sequence. Thus, the

Figure 61. Sequence and predictions from the CASP2 site and experimental secondary structure for L-fucose isomerase,
E. coli (591 residues), T0022,342 pdb code 1fui. Experimental secondary structural assignments, calculated with DSSP,
were taken from the CASP2 site. Key: E, â strand; H, R helix. For each prediction, Sov O and Q3 are listed in order of
descending Sov O: GOLDSTEIN, 68.1, 69.3; ROST, 67.3, 71.8; SOLOVYEV, 66.8, 71.7; JAAP, 64.9, 69.6; STERNBERG,
63.2, 69.1; MUNSON, 62.8, 68.1; BAZAN, 50.2, 63.1; BAKER, 40.7, 55.1, from coordinate model.
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family contains effectively only two sequences, and
these are 140 PAM units divergent. The family is
therefore not expected to give strong evolution-based
predictions. Accordingly, the Sov O andQ3 scores are
lower than those obtained from families with more
members. Figure 62 collects the secondary structure
predictions submitted for the CASP2 project for the
protein g3. All of the predictions that identify the
strands correctly misassign the first helix as a strand.
The ROST prediction correctly identifies the long
strands, and underpredicts the length of the shorter
edge strands, all expected for a consensus model.
Although the ROST group did not attempt to build a
tertiary structure from this protein, we suspect that

the ROST prediction would have sustained a suc-
cessful modeling attempt, as would the SERVER-
PREDICTPROTEIN prediction.

12. Exfoliative Toxin A (T0031)
The family of proteins containing target T0031

contains only three members. Although these are
widely divergent, evolution-based predictions are
expected to be poor. In fact, the Sov O and Q3 scores
are quite poor. Figure 63 collects the secondary
structure predictions submitted for the CASP2 project
for the exfoliative toxin A. In most of the predictions,
the Q3 is dramatically greater than the Sov O score.
This reflects the large number of fragments of

Figure 62. Sequence and predictions from the CASP2 site and experimental secondary structure for domain 1 of protein
g3, filamentous phage fd (66 residues),343 T0030, 1fgp, P03661, CDAA BPFD. Experimental secondary structural
assignments, calculated with DSSP and STRIDE, from the CASP2 site. Key: E, â strand; H, R helix. A number in
parentheses (n) indicates the prediction was a weighted average of n predictions. For these predictions, the prediction
with the highest Sov O is shown. For each prediction, Sov O and Q3 are listed in order of descending Sov O: ROST (2),
75.6, 66.2; SERVER PREDICTPROTEIN, 74.4, 65.2; SERVER DSC MULT, 61.4, 59.1; HUBBARD, 59.4, 62.1; JAAP,
59.3, 60.6; STERNBERG, 58.3, 59.1; SERVER SSPRED, 54.1, 60.6; SOLOVYEV, 53.3, 48.5; SERVER GOR, 46.6, 54.5;
ROSE, 40.9, 39.4; GOLDSTEIN, 40.5, 42.4; ABAGYAN, 39.0, 37.9; SHESTOPALOV, 36.1, 45.2; SERVER SSP MULT,
34.4, 47.0; SERVER NNPRREDICT, 33.9, 51.5; SERVER NNSSP MULT, 32.9, 47.0; MOULT (2), 7.2, 29.8, from coordinate
model.
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Figure 63. Sequence and predictions from the CASP2 site and experimental secondary structure for exfoliative toxin A, Staphylococcus
aureus344 (242 residues), T0031, P09331, ETA STAAU. Experimental secondary structural assignments (DSSP) from the CASP2 site.
STRIDE assignments were not available. Key: E, â strand; H, R helix. A number in parentheses (n) indicates the prediction was a
weighted average of n predictions. For these predictions, the prediction with the highest Sov O is shown. For each prediction, Sov O and
Q3 are listed in order of descending Sov O: MURZIN, from coordinate model, 61.8, 63.9; SOLOVYEV, 56.8, 65.6; SERVER NNSSP MULT,
55.2, 63.5; GOLDSTEIN, 55.0, 64.3; SERVER DSC MULT, 53.2, 61.0; SHESTOPALOV, 53.1, 58.4; SERVER PREDICTPROTEIN, 48.5,
63.6; STERNBERG, 48.5, 57.3; MUNSON (2), 46.8, 57.9; ROST, 45.6, 62.2; JAAP, 45.3, 58.5; SERVER GOR, 41.0, 41.9; SERVER N-
NPREDICT, 40.1, 56.0; SERVER SSPRED, 39.4, 50.6; SERVER SSP MULT, 36.9, 53.5; ABAGYAN (2), 33.5, 46.6; LENGAUER, 29.6,
34.4.
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secondary structure in the experimental assignment.
The three-residue helices do not represent canonical
helices, which require at least four residues to
complete a standard turn of an R helix. As the
coordinates are not yet available, it is not clear how
critical these omissions and mispredictions are. This
example represents one of the worst performances
for the high scoring automated nontransparent tools,
with several serious mistakes.

13. â-Cryptogein (T0032)

As noted above, a paper reporting NMR experi-
ments that assigned secondary structure to cryp-
togein was published before the CASP2 contest
began. Both MUNSON and VALENCIA used the
experimental information in making their models,
and stated so. This accounts for their highQ3 scores.
The other methods performed poorly on this protein.
Lesk was puzzled by the fact that automated predic-
tion methods that did so well (at least by theQ3 score)
on many of the predictions did so poorly on cryp-
togein. He considered the possibility that cryptogein
might be difficult to predict because it contained
multiple disulfide bonds.174 Similar problems were
not encountered, however, by these tools with other
disulfide-containing proteins that were targets of the
CASP2 contest.
From an evolutionary perspective, it is not surpris-

ing that the predictions are generally poor. Although
the cryptogein family has 11 homologs, the most
divergent pair is only 35 PAM units distant. The
effect is that the prediction is little better than one
made with a single sequence. As noted at many
points in this review, evolutionary-based methods do
not work well when applied to a family of proteins
that have undergone little sequence divergence.

Figure 64 collects the secondary structure predictions
submitted for the CASP2 project for â-cryptogein.

14. The Calponin Homology Domain (T0037)
With 18 members having an evolutionary diver-

gence of 150 PAM, the calponin homology domain
was an excellent target for evolution-based structure
prediction methods. Figure 65 collects the secondary
structure predictions submitted for the CASP2 project
for the calponin homology domain of â-spectrin. As
before, the helices containing only three or four
residues are not canonical and can be ignored in
modeling the four-helix bundle that is at the core of
the fold. Nevertheless, they depress the Sov O scores
in several of the predictions, and provide an illustra-
tion of how low Sov O scores can be misleading about
the true value of a prediction. For the core elements,
most of the prediction tools (except that of ROSE)
perform equally well except for the final helix, which
proved difficult to identify for some of the tools.

15. CBDN1 (T0038)
The CBDN1 protein is an endoglucanase that is

homologous to the protein macromomycin in its
central segment. The protein fold is built entirely
from â strands. If the homolog with known structure
is excluded, the protein family contains only two
members approximately 60 PAM units divergent.
Figure 66 collects the secondary structure predictions
submitted for the CASP2 project for the CBDN1
protein from Cellulomonas fimi. Several of the
predictions are very good, ignoring an extra strand
and a fusion of two strands.

16. NK-Lysin (T0042)
The NK-lysin family contains 20 homologs with

good evolutionary divergences, and should give good

Figure 64. Sequence and predictions from the CASP2 site and experimental secondary structure for â-cryptogein, fungus
Phytophthora cryptogea (98 residues),345 T0032, 1beo, P15570, ELIB PHYCR. Experimental secondary structural
assignments (DSSP and STRIDE) from the CASP2 site. Key: E, â strand; H, R helix. The MUNSON and VALENCIA
predictions were based on published secondary structure assignments made using NMR data. For each prediction, Sov O
and Q3 are listed in order of descending Sov O: MUNSON, 79.3, 79.6; VALENCIA, 75.7, 77.6; JAAP, 48.7, 54.1; ROST,
44.1, 53.1; GOLDSTEIN, 40.5, 55.1; SOLOVYEV, 38.5, 40.8; STERNBERG, 32.2, 37.8; BAKER, 18.4, 35.5.
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evolution-based secondary structure predictions. It
does, with Sov O scores in the 90s. Figure 67 collects
the secondary structure predictions submitted for the
family. Only the transparent (COBEGETJ) predic-
tion identifies the correct helices and helix junctions
throughout the protein, but several of the automated
tools come close. The transparent prediction was
used to predict contacts between secondary structural
elements that were cited by Lesk in his review of the
CASP2 project.174

E. Conclusions from CASP2

CASP2 confirmed and extended conclusions al-
ready evident from CASP1 and other bona fide

predictions made independently of the CASP projects.
First, evolution-based prediction tools could produce
excellent secondary structural models when an ad-
equate number of sequences having adequate evolu-
tionary divergence was used as input. Where evo-
lution-based methods did poorly, the poor performance
could in general be traced to few homologous se-
quences for the target or inadequate sequence diver-
gence among the homologs within the family. For
proteins with few homologs, results for different
predictions cluster around those expected for single
sequence predictions (see Figure 7, Nishikawa Ooi).
With some of the protein targets (for example, T0032)
the scores are worse than for single targets; for others
(for example, T0038) the scores are better.

Figure 65. Sequence and predictions from the CASP2 site and experimental secondary structure for calponin homology
domain of â-spectrin,Homo sapiens346 (109 residues), T0037, 1aa2. Experimental secondary structural assignments (DSSP)
from the CASP2 site. Key: E, â strand; H, R helix. For each prediction, Sov O and Q3 are listed in order of descending
Sov O: SOLOVYEV, 78.7, 82.4; SERVER DSC MULT, 75.0, 74.1; HUBBARD, 66.7, 78.5; VALENCIA, 66.3, 76.6; BAKER,
from coordinate model, 65.9, 69.9; STERNBERG, 64.1, 70.4; JAAP, 62.7, 70.4; SERVER NNPREDICT, 61.2, 64.8;
SERVER PREDICTPROTEIN, 61.1, 73.1; ROST, 60.5, 76.9; COHEN, 59.3, 68.5; SHESTOPALOV, 58.8, 60.4; GOLDSTEIN,
58.0, 65.7; SERVER NNSSP MULT, 55.5, 67.6; SERVER SSPRED, 54.0, 64.8; SERVER SSP MULT, 52.6, 62.0;
SERVER GOR, 51.8, 59.3; ROSE, 44.0, 45.3.
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One prescription for improvement is clear from this
observation: more sequences need to be collected.

This will be the inevitable outcome of genome projects.
As the sequence databases grow, fewer protein

Figure 66. Sequence and predictions from the CASP2 site and experimental secondary structure for CBDN1, Cellulomonas
fimi (152 residues),347 T0038, 1ulo, P14090, GUNC CELFI. Experimental secondary structural assignments (DSSP) were
from the CASP2 site. Key: E, â strand; H, R helix. For each prediction, Sov O and Q3 are listed in order of descending
Sov O: STERNBERG, 79.1, 74.3; SERVER NNSSP MULT, 78.9, 76.3; SOLOVYEV, 76.9, 75.0; HUBBARD, 75.0, 66.9;
ROST, 68.9, 74.3; GOLDSTEIN, 68.8, 69.7; SMITH, 67.0, 67.1; SERVER PREDICTPROTEIN, 65.4, 67.8; SERVER GOR,
63.1, 62.5; JAAP, 62.8, 66.4; SERVER SSPRED, 60.7, 67.1; SERVER NNPREDICT, 58.1, 69.7; MURZIN, from coordinate
model, 57.1, 60.9; SERVER SSP MULT, 55.3, 71.7; LENGAUER, 53.0, 50.7.
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families will be small (in their representation in the
database), and the quality of evolution-based predic-
tions should improve accordingly.
This observation belies efforts to rank the relative

value of different evolution-based prediction methods,
both transparent and nontransparent. Much of the
difference observed in the different prediction meth-
ods arose from the fact that different methods were
tested with different subsets of the set of target
proteins accessible for ab initio predictions, or dif-

ferent input was used by different methods. In many
cases, the application of classical scoring methods to
targets that contained substantial noncore segments
caused an underevaluation of the quality of the
prediction (as was the case in CASP1).
Nevertheless, evolution-based methods continued

to have difficulties assigning secondary structure
near active sites and distinguishing between internal
strands and internal helices. Therefore, one still
cannot be certain that secondary structure models

Figure 67. Sequence and predictions from the CASP2 site and experimental secondary structure for NK-lysin, pig (78
residues),348 T0042, 1nkl. Experimental secondary structural assignments, calculated with DSSP, were taken from the
CASP2 site. Key: E, â strand; H, R helix. A number in parentheses (n) indicates the prediction was a weighted average
of n predictions. For these predictions, the prediction with the highest Sov O is shown. For each prediction, Sov O and Q3
are listed in order of descending Sov O: BENNER (2), 92.1, 84.6; ROST, 85.7, 89.7; STERNBERG, 85.7, 87.2; EISENBERG
(2), BAKER, 82.5, 87.0; SOLOVYEV, 82.1, 82.1; COHEN, 81.2, 79.5; SERVER PREDICTPROTEIN, 81.0, 85.9; JAAP,
80.7, 83.3; MURZIN, from coordinate model, 79.8, 70.5; MOULT, 65.7, 74.0; SERVER DSC MULT, 65.6, 79.5;
SERVER NNSSP MULT, 63.3, 74.4; SERVER SSP MULT, 60.0, 65.4; SERVER GOR, 56.8, 55.1; SERVER NNPREDICT,
55.1, 62.8; SERVER PREDICTPROTEIN SINGLE (2), 54.6, 73.1; SERVER SSPRED, 45.2, 43.6; SHESTOPALOV, 44.3,
58.0.
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produced by evolution-based methods are free of all
serious mistakes, even when adequate diversity is
contained within the protein family being examined.
Thus, any model needs to be inspected in detail, and
full transparent predictions that call attention to
possible serious mistakes (as was done, for example,
with the HSP90 and protein serine/threonine phos-
phatase families) remain an important part of a
prediction. The emergence of fully automated, trans-
parent prediction tools (such as SAINT) should
combine the informative nature of a transparent
prediction with the convenience of an automated
prediction.
Two further prescriptions can be made. First,

future CASP projects should provide an expanded
submission format that allows predictors to identify
segments that might be incorrectly assigned for
specific reasons. Second, the prediction community
should actively discourage referees from blocking
publication of predictions in manuscript form. In
several cases, predictions submitted to the CASP2
were also submitted as manuscripts for publication
in journals, but blocked from publication by an
anonymous referee who considered the publication
of bona fide predictions to be inappropriate. For this
reason, manuscripts analyzing the structure of NK-
lysin (Richard Russell, personal communication),
ferrocheletase, and the S1 domain of polynucleotide
nucleotidyltransferase were not published. The dia-
log and insight that they contained has therefore
been lost, especially that which might prove helpful
for improving prediction heuristics for difficult pro-
teins and difficult types of secondary structure.
Referee anonymity has made it remarkably difficult
to persuade a few members of the prediction com-
munity that blocking publication never contributes
to a scientific enterprise. The effort to persuade must
be redoubled.
Despite the problematic serious mistake that char-

acterizes many predictions, the models predicted in
CASP2 were useful. As with CASP1, where the core
tertiary structural model of phospho-â-galactosidase
was successfully predicted, CASP2 yielded convincing
tertiary structural models. Perhaps the most valu-
able of these were made for the HSP90 family, where
long-distance homology was established and biologi-
cal function confirmed, both by prediction. The
residue-residue contacts predicted by the VALEN-
CIA group, and the segment-segment contacts pre-
dicted by the COBEGETJ group showed clear im-
provement over the results observed in CASP1.
With respect to methods for scoring evolution-based

predictions, CASP2 also confirmed conclusions that
were established earlier. First, Q3 and Sov scores are
not appropriately used in evaluating predictions,
even as a cutoff to distinguish predictions worthy of
closer inspection from those that are not. If the
experimental structure is for a protein with large
segments introduced in addition to the core segments,
the Q3 and Sov scores can be arbitrarily low.
Last, one cannot help but be impressed with the

improvement made by neural networks and other
nontransparent tools in the past two years. We
cannot say what the neural networks are considering
when they make a prediction. The fact that they do

poorly when few homologous sequences are used as
input, however, suggests that they are identifying
some feature in the divergence of sequences, similar
to the transparent methods. Intriguingly, in several
examples, transparent approaches and the nontrans-
parent neural networks made mistakes in parallel,
suggesting that the neural networks have “learned”
some of the “rules” that scientists working transpar-
ently had deduced. Whatever the reason, neural
networks are performing now quite well, as inspec-
tion of the above figures shows.

IX. Prospects for the Future

One cannot help but be impressed by the progress
that the summary above represents. In the 1980s,
the only method to predict a folded structure of a
protein was to identify it as a homolog of a protein
with a known structure, or to be assisted by experi-
mental information (most notably circular dichroism
spectra) that indicated that a protein adopted a
regular class of fold (generally all helical). Today,
tools are available that have permitted the construc-
tion of models of secondary structure that are useable
for other purposes.
It would be a mistake to dismiss this progress as

an inevitable outcome of having more sequence data.
Evolution-based predictions do, of course, incorporate
more information than a classical prediction. Ad-
ditional information certainly cannot hurt prediction,
if only by allowing “noise” to be averaged out. To the
extent to which mistakes in classical predictions arise
from “noise”, then averaging the predictions over
several homologs should diminish mistakes. The
prediction of the eight-fold R-â barrel structure for
tryptophan synthase by averaging GOR predictions
over a set of homologous sequences, of the annexins
by a similar approach (although assisted by circular
dichroism data) and the cytokine receptor superfam-
ily are landmarks in this approach.
However, it was clear at the outset with the work

of Lenstra et al. on ribonuclease in the 1970s (section
IV.D) that the approach would not be general. The
approach works best on R-â structures. It appears
to overpredict them, however, suggesting that the
component predictions introduce systematic error
into the evolution-based prediction. An evolutionary
analysis, coupled with an understanding of organic
chemistry, offers explanations why.
First, evolutionary considerations about how natu-

ral selection, protein stability, and conformation
showed the nature of the problem. As the products
of natural selection, natural proteins have evolved
to violate folding rules to engineer a desired level of
instability (section I.A). As organic molecules, pro-
teins should have local conformations that are influ-
enced by long-range interactions. These observations
suggested that classical prediction methods based on
single sequences would not work, indeed could not
work, for the general protein. These suggestions, in
turn, guided work toward areas that ultimately
proved to be more productive, work that focused on
identifying elements of tertiary structure (in particu-
lar, surface accessibility), constrained ways for using
patterns of variation and conservation as indicators
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of tertiary structure, and exploited manual analysis
of homologous protein sequences to speed the devel-
opment of insight that, in turn, speeded the develop-
ment of improved prediction heuristics. The predic-
tion of the core antiparallel â sheet of protein kinase
and the secondary structure of the src homology 2
domain are landmarks in this approach. The first
was especially interesting, as the prediction explicitly
denied a homology model, the first example where
the confidence in a secondary structure prediction
was sufficient to allow such a conclusion to be drawn.
While prognostication is always difficult, an inter-

play between evolutionary theory, chemical prin-
ciples, and massive amounts of sequence data may
well be useful in analyzing problems generally in
biological chemistry, including the role of biological
macromolecules in differentiation and development,
the design of biological pathways, and the biological
chemistry of disease. If so, then this interplay in the
protein structure prediction field may serve as a
model for a significant part of the future development
of biological chemistry.
Much remains to be done, however. Approaches

that model the conformation of a target protein from
the known conformation of a homologous protein are
quite successful, but only to the extent that the target
and reference structures are the same. To the extent
that the target and reference proteins do not have
the same conformation, homology modeling confronts
directly the most difficult problems in contemporary
physical chemistry: How to model quantitatively the
interaction of molecules and molecular fragments
with each other, especially in solution, especially
when the solvent is water. Much more work must
be directed toward understanding the underlying
physical chemical issues involved in this interaction,
both in proteins and in small molecules.
Long-distance searches for homologs (profiling,

threading) often encounter the same physical chemi-
cal issues, as potentials and force fields must at some
point be called upon to evaluate the superimposition
of the target sequence upon the reference structure.
Physical potentials and empirical potentials reflect
two distinct underlying philosophies for evaluating
reference structures identified in a threading exer-
cise. The first confronts again directly the physical
chemical problems discussed above. The second must
confront the problems associated with the statistical
analysis of protein structures, including the relatively
small size and potential bias in the crystallographic
database. Again, much more work is needed, and
much is underway.169

Tools that extract information residue-by-residue
from a set of aligned homologous sequences using
physical chemical models that incorporate an under-
standing of molecular evolution remain incomplete.
For example, the physical chemical models that
underlie the approach are best applied to monomeric
globular proteins that have physiological function in
solution. In particular, membrane proteins have not
yet come fully within the scope of these tools (but see
refs 349 and 350, where steps have been taken in
this direction).
Even if ab initio tools based on evolutionary

information work at the level of the secondary

structure, they do not represent a comprehensive
solution to the structure prediction problem. At best,
an ab initio secondary structure prediction will
identify a homolog of the target protein in the
crystallographic database. This converts the ab initio
problem into a homology modeling problem, and the
problems associated with homology modeling must
then be solved.
This step is, of course, not insignificant. This

approach has been successful so often in bona fide
prediction settings, both in public “contests” and in
private industry, that it is easy to imagine that it
will work generally. It should not be long before a
particular class of prediction problem can be declared
“solved”, those in which ab initio predictions of
secondary structure are used to identify protein
homologs in the database too distant to detect by any
simple threading or profile methods.
At worst, the ab initio problem yields a consensus

model for the protein fold, one that does not apply to
any individual protein in the family, but applies to
the family as a whole. Here, the present task is to
learn how to make ab initio modeling of tertiary
structure from predicted secondary structural ele-
ments routine, even in the absence of homologs or
analogs in the database. This is the forefront of
research in this area at this time. Friesner and Gunn
have outlined progress in this area, drawing the
conclusion “the problem of determining tertiary
structure once secondary structure is specified, al-
though nontrivial from the point of view of both
algorithms and potential functions, is tractable with
current computing technology”.40 This is good news
indeed, especially as some rather simple potential
functions can generate some tertiary structural mod-
els robustly in the 4-6 Å range.40

Even if ab initio tertiary structure modeling from
predicted secondary structural elements becomes
routine, however, the problem is not solved. Given
a consensus model for tertiary structure, most users
want to proceed to a model for the conformation of a
specific protein in the family. This is, of course,
another problem in homology modeling, with the
specific protein being the target structure and the
consensus model being the homolog. It therefore also
confronts the central problems in physical chemistry
mentioned above.
Thus, virtually all lines of progress in ab initio

prediction merely reduce the problem to one of
homology modeling, which must then confront and
resolve problems in physical chemistry that are
difficult to resolve. The message is clear: sooner or
later the physical chemical problems alluded to above
will need to be solved.
Further, a realist must point out that structure

prediction has a competitor: experimental structure
determination. During the time that modeling has
made the advances outlined in this review, crystal-
lography, electron microscopy, and NMR analysis of
protein structure have also made dramatic progress.
Assisted by molecular biological tools yielding pro-
teins in large amounts, a rationalization of conditions
for crystallizing proteins, new methods for phasing
diffraction data, and computational advances that
speed the solution of the structure, the number of
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crystal structures per year is about 10-fold higher
today than it was a decade ago. To this is added
increasing numbers of structures determined by
NMR methods.
The general problem of structural biology is not

unbounded. The number of families of proteins
readily recognizable by sequence similarities will be
less than 10 000 when the genomes of all organisms
on the planet are sequenced.220 The number of
distinct folds may be less than 1000.351 At some
point, experimental analysis of protein structure
becomes similar to the analysis of other types of
chemical structure. A good analogy is the work done
between 1850 and 1950 to identify all of the elements
in the Periodic Table. After 1950, the elements were
all known, and the research problem became obsolete.
Sooner or later (current estimates are in the year

2020), a crystal structure will be available for each
of the recognizable families of proteins that have been
produced by Darwinian evolution on planet earth.
Barring the discovery of extraterrestrial life, this will
effectively remove the need for any ab initio structure
prediction; all protein-modeling problems will be
problems in homology modeling. Ironically, ab initio
structure prediction may help hasten the progress
that will make itself obsolete as a discipline. As
noted above, ab initio prediction tools are already
able to identify proteins that most likely belong to a
class of structures already represented in the crystal-
lographic database. Thus, ab initio tools already
available should help crystallographers and NMR
spectrometrists select proteins to study that are not
members of families of proteins already represented
in the database, hastening the time when a repre-
sentative experimental structure is known for all
families of proteins on earth.
When this time comes, it seems certain that the

protein structure prediction effort of the 1990s will
not be remembered for the scores that prediction
methods produced in any particular contest, but for
what it contributed to our understanding of protein
chemistry and molecular evolution. Hence the em-
phasis in this review on transparency.
Here, it is worth noting how far the attitude of the

computational biochemistry community has evolved
in just the past five years. The scope of this review,
covering bona fide predictions made by transparent
analysis of homologous sequences based on an un-
derstanding of molecular evolution, where the imple-
mentation of the analysis required active participa-
tion of an expert, was far from the mainstream of
the field. Just three years ago, leading members in
the community viewed bona fide prediction as fun-
damentally and scientifically flawed as a research
method.65 Further, those advocating transparency
in a prediction method explicitly stated the premise
that the “best structural modelling is done by biologi-
cal chemists who understand the biochemistry of the
system that they are studying and use what they
know in the modelling effort”. While this was obvious
to those with a background in physical organic
chemistry, experts in the field found this grounds to
assert that transparent methods were neither repro-
ducible nor testable.65,176

Further, many computational chemists recognize
that a set of scores does not allow one to learn
optimally from the prediction exercise, which requires
that the prediction must be examined in detail. One
can detect increasingly among the community the
sentiment that “black box” tools will not produce an
understanding of the problem that will last after the
problem itself becomes obsolete. Hence the emphasis
on what went wrong, what went right, and why, in
CASP1 and CASP2.
Last, and perhaps most significantly, the field is

beginning to accept a role for human participation
in the prediction exercise. For example, reviewing
the conclusions of a workshop on structure prediction,
Hubbard et al. conceded that “more predictions will
be obtained if the central figure in the prediction
process is the experimentalist working on the protein
rather than the theoretician”.203 Regardless of one’s
view, this metamorphosis is noteworthy.
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XI. Glossary
BLAST A program to perform fast database search-

ing combined with rigorous statistics for judging the
significance of matches: http://www.ncbi.nlm.nih.gov/
BLAST/.
Core The part of the protein fold that is conserved

during divergent evolution.
DARWIN Data Analysis and Retrieval With Indexed

Nucleotide/peptide sequences. A programming environ-
ment for organizing and analyzing large amounts of
sequence data. Services from DARWIN are available on
the Web at http://cbrg.inf.ethz.ch.
Define Define produces a list of the secondary struc-

ture of a protein and some relations between the secondary
elements based solely on the coordinates of the R carbon
atoms. The principal procedure uses difference distance
matrices for evaluating the match of interatomic distances
in the protein to those from idealized secondary structures.
DSC Discrimination of protein Secondary structure

Class, a program to predict secondary structure:106 http:/
/bonsai.lif.icnet.uk/bmm/dsc/dsc form align.html.
DSSP Define Secondary Structure of Proteins, a

program to standardize secondary structure assignment
from X-ray coordinates. The hydrogen bonds and torsion
angles are the main parameters that are used by the
program to make these assignments: http://www.sander.
embl-heidelberg.de/dssp/.
GOR The Garnier-Osguthorpe-Robson method for

predicting secondary structure for a protein sequence. The
method, discussed in detail in ref 105 is based on the theory
of information, which has its roots in probability theory.
Central to this method is the concept that residues,
considered individually and as part of a sequence pattern,
have a tendency to adopt certain conformations. The
following are some servers that provide GOR analysis on
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the Internet: http://molbiol.soton.ac.uk/compute/GOR.html
and http://absalpha.dcrt.nih.gov:8008/gor.html.
Hydrophobic moment Analog of the electric dipole

moment. It measures the asymmetry of hydrophobicity or
amphiphilicity.
Indel Insertion or deletion. An evolutionary event

that either adds amino acids or subtracts amino acids from
a polypeptide chain.
Markov A Markov chain is a sequence of random

variables such that the future of the variable is determined
by its present state (but independent of the way in which
the present state arose).
NNSSP Prediction of protein secondary structure by

combining nearest-neighbor algorithms and multiple se-
quence alignments:81 http://dot.imgen.bcm.tmc.edu:9331/
pssprediction/pssp.html.
P-curve Another program to assign secondary struc-

ture from Cartesian coordinates. The assignments are
made from a set of helicoidal parameters.
Parse A segment of polypeptide chain or section of a

multiple sequence alignment that lies between two stan-
dard secondary structural units; R helix or â strand.
PHD A neural network program208 for assigning

secondary structure: http://www.embl-heidelberg.de/pre-
dictprotein/predictprotein.html.
PREDATOR A secondary structure prediction pro-

gram. It takes as input a single protein sequence to be
predicted and can optimally use a set of unaligned se-
quences as additional information to predict the query
sequence. The mean prediction accuracy of PREDATOR
is 68% for a single sequence and 75% for a set of related
sequences. PREDATOR does not use multiple sequence
alignment. Instead, it relies on careful pairwise local
alignments of the sequences in the set with the query
sequence to be predicted: http://www.embl-heidelberg.de/
cgi/predator serv.pl.
Q3 A score assigned to a secondary structure predic-

tion that involves comparing the prediction to the experi-
mental structure. Q3 ) Qok/Qtotal, where Qok is the number
of correct assignments and Qtotal is the total number of
assignments.
QL The Quadratic-Logistic prediction method is based

on maximum-likelihood methods: http://absalpha.dcrt.
nih.gov:8008/predict.html.
QSLAVE PSLAVE/QSLAVE Alignment and search-

ing for common protein folds using a databank of structural
templates: http://www-cryst.bioc.cam.ac.uk/local html/
soft-base.html.
SIMPA SIMilarity Peptide Analysis,132 a program to

predict secondary structure based on sequence similarity
between peptides (17 amino acid long) and sequences of
known structure.
SOPMA Self-Optimized Prediction Method from Align-

ment83 is a package to make secondary structure predic-
tions of proteins: http://ibcp.fr/serv pred.html.
SSPRED A three-state secondary structure predic-

tion routine. The computer routine PreferCal was first
written to determine the preference or avoidance weights
for each possible pair of residue exchanges and for each of
the three secondary structural states. PreferPred predicts
secondary structural elements within a query sequence
multiply aligned to related primary structures. Finally,
PreferEval allows evaluation of the accuracy of the second-
ary structure predictions relative to those known from
three-dimensional structural determinations: http://ww-
w.embl-heidelberg.de/cgi/sspred mul.pl.
STRIDE Program to assign secondary structure from

experimental coordinates.88 STRIDE uses both hydrogen-
bonding and main chain dihedral angles as input, param-
eterizes this information against secondary structures
assigned by crystallographers, and optimizes the relative

contributions of the two with the specific goal of producing
assignments which are in closer agreement with the
assignments that crystallographers made. The propensi-
ties of amino acid residues with specific φ and ψ angles to
be part of helices and strands are also considered, so the
method depends as well on the nature of the amino acids
involved: http://www.embl-heidelberg.de/cgi/stride serv.
Target protein A protein of unknown conformation,

whose conformation is sought.
Threading A process that involves superimposing

the sequence of a target protein on the three-dimensional
structure of a possible distant homolog to see if the target
sequence might fold to give the same overall conformation.
Transparent prediction method A tool for assign-

ing secondary structure to a protein sequence that yields
an assignment where the user can understand why the
assignment was made.
ZPRED Computer program21 that predicts secondary

structure using physicochemical information from a set of
aligned sequences and the Garnier et al.105 secondary
structure decision constants: http://kestrel.ludwig.ucl.ac.uk/
zpred.html.•

XII. Appendix

Protein Structure Prediction Tools on the
World-Wide Web

Homology Modeling (Comparative Modeling)

• Map123d: evaluation of 3D-models, Sallantin group
http://www-bio.lirmm.fr:8090/eval.html

REF: J. Gracy, L. Chiche, and J. Sallantin, Improved
alignment of weakly homologous protein sequences using
structural information. Protein Eng. 1993, 6, 821-829.

• MODELLER: homology modeling program by satisfaction
of spatial restraints, Sali group
ftp://guitar.rockefeller.edu/pub/modeller/ (ftp site)

REF: A. Sali and T. L. Blundell, Comparative protein
modelling by satisfaction of spatial restraints. J. Mol. Biol.
1993, 234, 779-815.

• SWISS-MODEL (part of ExPasy server): automated
homology modeling, Peitsch group
http://expasy.hcuge.ch/swissmod/SWISS-MODEL.html

REF: M. C. Peitsch, ProMod and Swiss-Model: Internet-
based tools for automated comparative protein modelling.
Biochem. Soc. Trans. 1996, Feb, 24(1), 274-9.•

Threading (Fold Recognition)

• 123D TopLign: threading tool based on secondary struc-
ture prediction and residue-residue contact potential (part
of the GMD-SCAI server), Zimmer group
http://cartan.gmd.de/123D-test.html

REF: N. N. Alexandrov, R. Nussinov, and R. M. Zimmer,
Fast protein fold recognition via sequence to structure
alignment and contact capacity potentials. Pacific Sympo-
sium on Biocomputing ’96; Hunter, L., Klein, T. E., Eds.;
World Scientific Publishing Co.: Singapore, 1996; pp 53-
72.

• Gon+predss/Gon+predss+MULT: (part of the UCLA-
DOE frsvr server) Fischer threading approach, considers
predicted secondary structure in addition to fold recogni-
tion, Eisenberg group
http://www.doe-mbi.ucla.edu/people/frsvr/frsvr.html

REF: D. Fischer and D. Eisenberg, Fold recognition using
sequence-derived predictions. Protein Sci. 1996, 5, 947-
955.
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• H3P2: Rice threading approach (part of the UCLA-DOE
frsvr server), considers predicted secondary structure,
Eisenberg group
http://www.doe-mbi.ucla.edu/people/frsvr/frsvr.html

REF: D. Rice and D. Eisenberg, A 3D-1D substitution
matrix for protein fold recognition that includes predicted
secondary structure of the sequence. J. Mol. Biol. 1996,
submitted for publication.

• ProFit: threading based on an empirical “energy” func-
tion, code can be downloaded, Sippl group
ftp://gundi.came.sbg.ac.at/publ (ftp site)

REF: M. J. Sippl, Recognition of errors in three-dimen-
sional structures of proteins. Proteins 1993, 17, 355-62.

• PSCAN: profilescan threading, Arne Elofsson
http://www.biokemi.su.se/∼arne/pscan/

REF (most closely related): A. Elofsson, D. Fischer, D. W.
Rice, S. M. LeGrand, and D. Eisenberg, A study of
combined structure-sequence profiles. Folding & Design
1996, 1, 451-461.

• RDP: threading by recursive dynamic programming (part
of the GMD-SCAI server), Lengauer group
http://cartan.gmd.de/cgi-bin/ToPLignLogin?/home/protal/

WWW+/home/protal/WWW/fast+FastLogin.rc+FastRDP
REF: R. Thiele, R. Zimmer, and T. Lengauer, Recursive
dynamic programming for adaptive sequence and structure
alignment. Intelligent Systems for Molecular Biology 1995,
3, 384-92.

• THREADER: threading code can be downloaded, Thorn-
ton group
ftp://ftp.biochem.ucl.ac.uk/pub/THREADER

REF: D. T. Jones, W. R. Taylor, and J. M. Thornton, A
new approach to protein fold recognition.Nature 1992, 358,
86-89.

• TOPITS (called PHD threader as part of the PredictPro-
tein server): threading based on secondary structure
prediction and solvent accessibility prediction, Burkhard
Rost
http://www.embl-heidelberg.de/predictprotein/

REF: B. Rost, TOPITS: threading one-dimensional predic-
tions into three-dimensional structures. Ismb 1995, 3, 314-
321.•

Solvent Accessibility Prediction
• PHD (called PHDacc as part of the PredictProtein
server): accessibility prediction (10 states in output) by a
neural network
http://www.embl-heidelberg.de/predictprotein/

REF: B. Rost, PHD: predicting one-dimensional protein
structure by profile-based neural networks. Methods En-
zymol. 1996, 266, 525-539.

•DARWIN, prediction of surface, interior, active site, and
parse positions from homologous sequences
http://cbrg.inf.ethz.ch

Ab Initio Secondary Structure Prediction
(servers accepting multiple alignments as input are

marked [MULT+])

• COILS: probabilistic coiled coil prediction
http://ulrec3.unil.ch/software/COILS form.html

[MULT-]
REF: A. Lupas, M. Van Dyke, and J. Stock, Predicting
Coled Coils from Protein Sequences. Science 1991, 252,
1162-1164.

• DAS: transmembrane helix prediction using low-strin-
gengy dot plots, Eloffsson group
http://www.biokemi.su.se/∼server/DAS/ [MULT-]

REF: (Web only) M. Cserzo, E. Wallin, I. Simon, G. von
Heijne, and A. Elofsson, Prediction of transmembrane

alpha-helices in prokaryotic membrane proteins: applica-
tion of the Dense Alignment Surface method. http://
www.biokemi.su.se/∼server/DAS/abstract.html.
• DPM (Double Prediction Method): secondary structure
prediction by combining Chou-Fasman-type parameters
and protein-folding class prediction (as part of the Protein
Sequence Analysis server at IBCP), Deleage group
http://www.ibcp.fr/serv pred.html [MULT-]

REF: G. Deleage and B. Roux, An algorithm for protein
secondary structure prediction based on class prediction.
Protein Eng. 1987, 1, 289-294.

• DSC: secondary structure prediction by discrimination
of secondary structure class, Sternberg group
http://bonsai.lif.icnet.uk/bmm/dsc/dsc read align.html -

[MULT+]
REF: R. D. King and M. J. E. Sternberg, Identification and
application of the concepts important for accurate and
reliable protein secondary structure prediction. Protein Sci.
1996, 5, 2298-2310.

• GOR: classic, statistical method for protein secondary
structure prediction, online at SBD Southampton
http://molbiol.soton.ac.uk/compute/GOR.html

[MULT-]
or at the University of Leeds
http://bmbsgi11.leeds.ac.uk/bmb5dp/gor.html [MULT-]

REF: J. Garnier, D. J. Osguthorpe, and B. Robson,
Analysis of the accuracy and implications of simple meth-
ods for predicting the secondary structure of globular
proteins. J. Mol. Biol. 1978, 120, 97-120.

• Map123d: secondary structure prediction (neural net-
work) for homology modeling, Sallantin group
http://www-bio.lirmm.fr:8090/intro.html [MULT-]

REF: J. Gracy, L. Chiche, and J. Sallantin, Learning and
alignment methods applied to protein structure prediction.
Biochimie 1993, 75, 353-361.

• Multicoil: two- and three-stranded coiled coil prediction
by analysis of correlated residues, Kim group (program can
also be downloaded), based on Paircoils program
http://ostrich.lcs.mit.edu/cgi-bin/multicoil [MULT-]

REF: E. Wolf, P. S. Kim, and B. Berger, MultiCoil: A
program for predicting two- and three-stranded coiled coils.
Protein Sci. 1997, in press.

• MultPredict (also known as ZPRED): statistical second-
ary structure prediction, based on physicochemical residue
properties, from AMPS (Barton) multiple sequence align-
ments, Sternberg group
http://kestrel.ludwig.ucl.ac.uk/zpred.html [MULT+]

REF: M. J. Zvelebil, G. J. Barton, W. R. Taylor, and M. J.
Sternberg, Prediction of protein secondary structure and
active sites using the alignment of homologous sequences.
J. Mol. Biol. 1987, 195, 957-961.

• NNPREDICT: secondary structure prediction by a neural
network, Cohen group
http://www.cmpharm.ucsf.edu/∼nomi/nnpredict.html -

[MULT-]
REF: D. G. Kneller, F. E. Cohen, and R. Langridge,
Improvements in protein secondary structure prediction by
an enhanced neural network. J. Mol. Biol. 1990, 214, 171-
182.

• NNSSP: secondary structure prediction by an improved
nearest-neighbor method using multiple sequence informa-
tion (part of the structure prediction server at the Baylor
College of Medicine), Solovyev group
http://dot.imgen.bcm.tmc.edu:9331/pssprediction/pssp.ht-

ml [MULT+] (e-mail)
REF: A. A. Salamov and V. V. Solovyev, Prediction of
protein secondary structure by combining nearest-neighbor

2838 Chemical Reviews, 1997, Vol. 97, No. 8 Benner et al.



algorithms and multiple sequence alignments. J. Mol. Biol.
1995, 247, 11-15.

• Paircoils: two-stranded coiled coil prediction by analysis
of correlated residues, Kim group (program can also be
downloaded)
http://ostrich.lcs.mit.edu/cgi-bin/score [MULT-]

REF: B. Berger, D. B. Wilson, E. Wolf, T. Tonchev, M.
Milla, and P. S. Kim, Predicting coiled coils by use of
pairwise residue correlations. Proc. Natl. Acad. Sci. U.S.A.
1995, 92, 8259-8263.

• PHD (called PHDsec as part of PredictProtein Server):
secondary structure prediction by a profile fed neural
network, Sander group
http://www.embl-heidelberg.de/predictprotein/

[MULT+]
REF: B. Rost and C. Sander, Prediction of protein struc-
ture at better than 70% accuracy. J. Mol. Biol. 1993, 232,
584-599.
REF: B. Rost, PHD: predicting one-dimensional protein
structure by profile based neural networks. Methods En-
zymol. 1996, 266, 525-539.

• PHD (called PHDhtm as part of PredictProtein Server):
transmembrane helix prediction by a neural network,
Sander group
http://www.embl-heidelberg.de/predictprotein/

[MULT+]
REF: B. Rost, R. Casadio, P. Fariselli, and C. Sander,
Prediction of helical transmembrane segments at 95%
accuracy. Protein Sci. 1995, 4, 521-533.
REF: B. Rost, PHD: predicting one-dimensional protein
structure by profile based neural networks. Methods En-
zymol. 1996, 266, 525-539.

• PREDATOR: secondary structure prediction from local
sequence alignments with known structures, Argos Group
http://www.embl-heidelberg.de/argos/predator/predator in-

fo.html [MULT+]
REF: D. Frishman and P. Argos, Incorporation of non-local
interactions in protein secondary structure prediction from
amino acid sequence. Protein Eng. 1996, 9, 133-42.

• PSA: probabilistic folding class, secondary and super-
secondary structure prediction, Smith group
http://bmerc-www.bu.edu/psa/ [MULT-]

REF: C. M. Stultz, J. V. White, and T. F. Smith, Structural
analysis based on state-space modeling. Protein Sci. 1993,
2, 305-314.

• QL: quadratic-logistic secondary structure prediction,
Munson group
http://absalpha.dcrt.nih.gov:8008/predict.html

[MULT-]
REF: P. J. Munson, V. Di Francesco, and R. Porrelli,
Protein secondary structure prediction using periodic-
Quadratic-Logistic Models: theoretical and practical Is-
sues. 27th Annual Hawaii International Conference on
System Science 5:375-384, IEEE, Los Alamitos, CA, 1994.

• SAPS: statistical analysis of protein sequences
[MULT-]
http://ulrec3.unil.ch/software/SAPS form.html

REF: V. Brendel, P. Bucher, I. Nourbakhsh, B. E. Blaisdell,
and S. Karlin, Methods and algorithms for statistical
analysis of protein sequences. Proc. Natl. Acad. Sci. U.S.A.
1992, 89, 2002-2006.

• SOPMA (as part of the Protein Sequence Analysis server
at IBCP): self-optimized secondary structure prediction
method, Deleage group
http://www.ibcp.fr/serv pred.html [MULT-]

REF: C. Geourjon and G. Deleage, SOPM: a self-optimized
method for protein secondary structure prediction. Protein
Eng. 1994, 7, 157-64.
REF: C. Geourjon and G. Deleage, SOPMA: Significant
improvements in protein secondary structure prediction by
consensus prediction from multiple alignments. CABIOS
1995, 11, 681-684.

• SOSUI: secondary structure prediction for membrane
proteins, Mitaku group, Tokyo University of Agriculture
and Technology
http://www.tuat.ac.jp/∼mitaku/adv sosui/ [MULT-]

REF: n/a (March 1997).

• SSCP: secondary structure content prediction from
sequence, Argos group
http://www.embl-heidelberg.de/argos/sscp/sscp info.

html [MULT-]
REF: F. Eisenhaber, F. Imperiale, P. Argos, and Frommel
C., Prediction of secondary structural content of proteins
from their amino acid composition alone. I. New analytic
vector decomposition methods. Proteins 1996, 25, 157-68.
REF: F. Eisenhaber, F. Frommel, and P. Argos, Prediction
of secondary structural content of proteins from their amino
acid composition alone. II. The paradox with secondary
structural class. Proteins 1996, 25, 169-79.

• SSP: segment-oriented secondary structure prediction
using linear discriminant analysis (part of the structure
prediction server at the Baylor College of Medicine),
Solovyev group
http://dot.imgen.bcm.tmc.edu:9331/pssprediction/pssp.

html [MULT+] (e-mail)
REF: V. V. Solovyev and A. A. Salamov, Predicting alpha-
helix and beta-strand segments of globular proteins. CA-
BIOS 1994, 10, 661-669.

• SSPAL: secondary structure prediction for single se-
quences (NO multiple sequence information required) by
a nearest neighbor method looking for local sequence
alignments with known structures (part of the structure
prediction server at the Baylor College of Medicine),
Solovyev group
http://dot.imgen.bcm.tmc.edu:9331/pssprediction/pssp.

html [MULT-]
REF: A. A. Salamov and V. V. Solovyev, Protein secondary
structure prediction using local alignments. J. Mol. Biol.
1997, 268, 31-36.

• SSPRED: secondary structure prediction based on resi-
due exchange weight matrixes in different secondary
structures, Argos group
http://www.embl-heidelberg.de/cgi/sspred mul.pl -

[MULT+]
REF: P. K. Mehta, J. Heringa, and P. Argos, A simple and
fast approach to prediction of protein secondary structure
from multiply aligned sequences with accuracy above 70%.
Protein Sci. 1995, 4, 2517-2525.

• TMAP: prediction of transmembrane segments using
multiple sequence alignments, Argos group
http://www.embl-heidelberg.de/tmap/tmap info.

html [MULT+]
REF: B. Persson and P. Argos, Prediction of transmem-
brane segments in proteins utilising multiple sequence
alignments. J. Mol. Biol. 1994, 237, 182-192.

Tertiary Structure Prediction

• PHD (called PHDtopology as part of the PredictProtein
server): topology (IN or OUT) prediction for transmem-
brane helices by a neural network, Sander group
http://www.embl-heidelberg.de/predictprotein/

Bona Fide Predictions of Protein Secondary Structure Chemical Reviews, 1997, Vol. 97, No. 8 2839



REF: B. Rost, P. Fariselli, and R. Casadio, Topology
prediction for helical transmembrane proteins at 86%
accuracy. Protein Sci. 1996, 5, 1704-1718.
REF: B. Rost, PHD: predicting one-dimensional protein
structure by profile based neural networks. Methods En-
zymol. 1996, 266, 525-539.

• TM pred: prediction of transmembrane secondary struc-
ture and orientation, Stoffel group
http://ulrec3.unil.ch/software/TMPRED form.html

REF: K. Hofmann and W. Stoffel, TMbase - A database of
membrane spanning proteins segments. Biol. Chem. Hoppe-
Seyler 1993, 347, 166.•

Evaluation of Secondary Structure Prediction
• EvalSec (part of the PredictProtein server): calculation
of evaluation indices for secondary structure predictions,
Sander group
http://www.embl-heidelberg.de/predictprotein/

REF: B. Rost, C. Sander, and R. Schneider, Redefining the
goals of protein secondary structure prediction. J. Mol. Biol.
1994, 235, 13-26.

Joint Servers Allowing Submission to Different Methods
Simultaneously
Threading (Fold Recognition)

• UCLA-DOE frsvr

Gon+predss+MULT (D. Fischer and D. Eisenberg,
UCLA)

H3P2 (D. Rice and D. Eisenberg, UCLA)
TOPITS (B. Rost, EMBL)
123D (N. N. Alexandrov, R. Nussinov,

and R. M. Zimmer, Amgen/GMD)
PSCAN (A. Elofsson, D. Fischer, D. W. Rice,

S. M. Legrand, and D. Eisenberg,
Stockholm U./UCLA)

http://www.doe-mbi.ucla.edu/people/frsvr/frsvr.html

Ab Initio Secondary Structure Prediction

• IBCP server

DPM (G. Deleage and B. Roux, CNRS)
PHDsec (B. Rost and C. Sander, EMBL)
SOPMA (C. Geourjon and G. Deleage, IBCP-CNRS)
+ statistical
methods

http://www.ibcp.fr/serv pred.html

• BCM server

SSP (V. V. Solovyev and A. A. Salamov, BCM)
NNSSP (A. A. Salamov and V. V. Solovyev, BCM)
SSPAL (A. A. Salamov and V. V. Solovyev, BCM)

http://dot.imgen.bcm.tmc.edu:9331/pssprediction/
pssp.html [MULT+]
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