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When protein sequences divergently evolve under functional constraints,
some individual amino acid replacements that reverse the charge (e.g.
Lys to Asp) may be compensated by a replacement at a second position
that reverses the charge in the opposite direction (e.g. Glu to Arg). When
these side-chains are near in space (proximal), such double replacements
might be driven by natural selection, if either is selectively disadvanta-
geous, but both together restore fully the ability of the protein to contri-
bute to fitness (are together “neutral”). Accordingly, many have sought
to identify pairs of positions in a protein sequence that suffer compensa-
tory replacements, often as a way to identify positions near in space in
the folded structure. A “charge compensatory signal” might manifest
itself in two ways. First, proximal charge compensatory replacements
may occur more frequently than predicted from the product of the proba-
bilities of individual positions suffering charge reversing replacements
independently. Conversely, charge compensatory pairs of changes may
be observed to occur more frequently in proximal pairs of sites than in
the average pair. Normally, charge compensatory covariation is detected
by comparing the sequences of extant proteins at the “leaves” of phylo-
genetic trees. We show here that the charge compensatory signal is more
evident when it is sought by examining individual branches in the tree
between reconstructed ancestral sequences at nodes in the tree. Here, we
find that the signal is especially strong when the positions pairs are in a
single secondary structural unit (e.g. a helix or b strand) that brings the
side-chains suffering charge compensatory covariation near in space, and
may be useful in secondary structure prediction. Also, “node–node” and
“node–leaf” compensatory covariation may be useful to identify the
better of two equally parsimonious trees, in a way that is independent of
the mathematical formalism used to construct the tree itself. Further,
compensatory covariation may provide a signal that indicates whether
an episode of sequence evolution contains more or less divergence in
functional behavior. Compensatory covariation analysis on reconstructed
evolutionary trees may become a valuable tool to analyze genome
sequences, and use these analyses to extract biomedically useful infor-
mation from proteome databases.
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Introduction

The evolution of protein sequences is nearly
always described using one of several stochastic
models for the accumulation of amino acid
replacements.1 These are captured in algorithms
known by widely recognized names (e.g. the
Needleman–Wunsch,2 Smith–Waterman,3 and
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Felsenstein maximum likelihood4 tools). These
tools have become more sophisticated in recent
years as mathematicians have “inched towards
reality”4 in their mathematical modelling well
supported by a rich background in statistics,
theorems, and proof.

Nevertheless, patterns of replacement predicted
by these mathematical models remain quite dif-
ferent from the patterns that are actually observed
in proteins diverging under functional con-
straints.1,5 The reason for these differences is well
understood. Briefly, simple stochastic models treat
proteins as if they were linear strings of letters. In
reality, proteins have three-dimensional structures
that support behaviors that are important for them
to contribute to the fitness of the host (“function”).
These behaviours are not a linear sum of the beha-
viors of their parts. Amino acid replacement is
therefore constrained in a way unanticipated for a
linear string of letters.

The differences between mathematically con-
venient models and the reality of organic chemistry
need not be paralyzing, however. First-order sto-
chastic treatments of protein sequences can provide
“null” hypotheses, statements about how proteins
would behave if they were formless, functionless
strings of letters. The difference between how pro-
teins actually divergently evolve and how first-
order treatments model their divergent evolution,
therefore contains a signal about fold and function.1

Analyses of this signal have been remarkably
productive. They provide practical tools for pre-
dicting the folded conformation of proteins from
sequences,1,6 and many useful approaches for
extracting functional information from genomic
sequence data.7 – 9 Accordingly, one goal of con-
temporary computational biology is to extend the
concepts and tools needed to extract signals
concerning structure and function from features
of divergent evolution that do not meet the
expectations of simple stochastic models.

Perhaps the most serious approximation made
by first-order stochastic models is their treatment
of individual positions in a protein sequence as
independently evolving entities. Virtually all of
these tools analyze sequence divergence one
position at a time under a model where position i
in a sequence suffers independent replacement of
position j. Even models that recognize that differ-
ent sites may have different mutability (gamma
models) treat sites as being independently
evolving.10 This is, of course, extremely convenient
for any statistical model for protein sequence
divergence as it enables the probability of a
sequence alignment overall to be calculated as the
product of probabilities calculated for individual
positions in the alignment.

Even casual inspection of a multiple sequence
alignment, however, shows that positions in a
protein sequence do not suffer replacement inde-
pendently. Replacements in positions adjacent in a
sequence are strongly correlated.11 The correlation
almost certainly reflects functional constraints on

replacement set within the context of a folded
structure. Therefore, it has proven to be useful, in
particular, for predicting the three-dimensional
structure of protein folds.1

Position pairs distant in the sequence but near
space in the three-dimensional fold might also
be expected to suffer replacement in a correlated
fashion.12,13 Many classes of these can be
envisioned. For example, a “big-for-small” replace-
ment at position i might be compensated by a
coincident “small-for-big” replacement at position
j, to conserve overall size in the packed core of the
fold, and therefore conserve a functional behavior
related to packing (the stability of the fold).
Alternatively, a “positive-for-negative” charge
replacement at position i might be compensated
by a “negative-for-positive” charge replacement at
position j to conserve overall charge, and therefore
conserve a functional behavior related to net charge.

Behind this expectation stands a model based on
the neutral theory of evolution.14 Under this model,
amino acid replacements that dramatically alter the
physical property of the side-chain (e.g. its size or
charge) will disrupt the performance of a protein
already optimized to contribute to the fitness of
the host organism. The fitness value of the protein
can be restored only by a second change that
compensates for the first alteration in physical
properties. In the language of neutral theory, we
would say that the first replacement was selec-
tively disadvantageous, the second was positively
selected (in the context of the first), and both
together lead to a result that is neutral.

Analyses of compensatory replacement have
found practical application. For example, a pair of
compensatory changes in the protein kinase family
underlay the successful prediction of the anti-
parallel sheet in the first kinase domain,15 contra-
dicting a prediction of a parallel sheet based on
motif analysis.16 This example represents the first
example where compensatory covariation analysis
was a key to a bona fide prediction of protein
structure. More recently, Cohen and his co-workers
presented an elegant example of compensatory
replacement in phosphoglycerate kinase,17 sup-
porting the suggestion that correlated change in
the evolutionary history of two protein families
might be taken as evidence that the two proteins
operate together. More generally, several labora-
tories have suggested that compensatory covaria-
tion might be used to detect incorrect folds in a
structure prediction environment.18 – 20

Unfortunately, comparison of any two sequences
diverging at n sites generates n(n 2 1)/2 pairs of
candidate sites holding coincident replacements.
These might be compensatory; they might be
coincidental. Only a fraction of these will be truly
compensatory, meaning that either replacement
alone would have been rejected by natural
selection without the other. Most replacements are
presumably not compensated, either because they
are neutral (implying that no other changes are
needed to prevent their having a negative impact
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on functional behavior), or because they have a
positive impact on fitness (implying that no other
changes are desired to neutralize their impact on
functional behavior).

Thus, while such compensation is easily recog-
nized when analyzed in the context of a known
crystal structure (the sites suffering compensatory
replacements presumably are near in space), it is
difficult to identify the pairs of sites that might
suffer compensatory changes without a crystal
structure. As a consequence, the compensatory
covariation signal, represented by the number of
pairs of replacement that are causally interrelated
(where either alone would be rejected by natural
selection) relative to the n(n 2 1)/2 pairs that arise
whenever two protein sequences differing at n
sites are compared, is weak, at least as it has been
generally calculated.21 – 23 Some have suggested
that the compensatory replacement signal may
never be broadly useful for this reason.24 Others
have suggested that the signal might have value,
especially if it can be strengthened.

A variety of laboratories has recently explored
approaches to strengthen the compensatory
replacement signal.18,19 For example, the signal for
charge compensation appears to be stronger than
the signal for size compensation, suggesting that
it might be useful to analyze different types of
coincident replacement separately. Further,
compensatory covariation signals appear to be
strongly dependent on the evolutionary distance
between the two sequences, measured in PAM
units (the number of point accepted mutations per
100 amino acids).25 For example, charge compen-
satory changes were found to be more prominent
at PAM 25 than at PAM 100.19

These observations are not surprising given the
model. Charge reversal changes might be expected
to be the change most in need of compensation.
Likewise, at longer PAM distances, pairwise
compensation might be obscured beneath com-
pensation arising from replacements at multiple
sites.

This work suggested a general strategy to
strengthen the signal for compensatory replace-
ment. At the core of this strategy is the recognition
that compensatory replacements can be calculated
in two ways. In the first, two extant protein
sequences—sequences that are found in organisms
living today—are examined. As extant sequences
are at the leaves of an evolutionary tree, we call
these “leaf–leaf” comparisons (Figure 1). In the
past, virtually all compensatory substitution has
been sought via leaf–leaf comparisons.

An alternative approach is possible. Given a set
of homologous protein sequences, a multiple
sequence alignment, and an evolutionary tree
interrelating them, the sequences of ancestral
proteins represented by nodes in the tree can be
approximated using well-known heuristics. Given
reconstructed sequences of ancestral proteins at
nodes in an evolutionary tree, compensatory
covariation can be sought using “node–leaf” and
“node–node” comparisons.

As compensatory signals are stronger when
the sequences being compared are separated by
shorter distances19 and as the distance between
two nodes in a tree must be shorter than the dis-
tance between the leaves on the tree (Figure 1),
node–node and node–leaf compensatory signals
must be stronger than the leaf–leaf signal that
contains them. Phrased differently, the number of
replacements between average nodes is smaller
than the number between average leaves. This
means that the n(n 2 1)/2 total number of pairs is
smaller, implying that the truly compensatory
pairs, those driven by a fitness constraint, will be
less obscured by the background of uncompen-
sated events, when they are identified on indi-
vidual branches of a tree.

Further, although the reconstructed ancestral
sequences are probabilistic, and cannot be proven
to be correct, even crude heuristics for reconstruct-
ing ancestral sequences localize specific changes to
specific regions of a tree better than if no recon-
structions are done at all. Thus, even poor recon-
struction heuristics permit us to focus on briefer
episodes of time during which two compensatory
changes might have occurred than is possible by
leaf–leaf comparisons.

Last, node–leaf and node–node comparisons
model the actual evolutionary events that might
contain the compensatory signal better than leaf–
leaf comparisons. The statement that “position i
and position j should suffer replacement in a
compensatory way” is equivalent to the statement
that if either position i or position j suffer replace-
ment individually, the host organism is less “fit”
(in a Darwinian sense). This, in turn, implies that
if position i suffers a replacement then position j is
under “positive selective pressure” to suffer a
replacement. Conversely, this means that a replace-
ment at position j will be fixed in a population
faster than expected for a neutrally drifting
position. This means that true compensatory
changes will normally occur on the same

Figure 1. A leaf–leaf comparison (red) traverses more
evolutionary distance than a node–node comparison
(blue).
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branch of the tree, even on a very short branch of
the tree.

This study examined the feasibility of detecting
node–node and node–leaf compensatory covariation
signals by examining reconstructed evolutionary
events within families of proteins.

Results

A total of 71 families of proteins were examined
in this study. For each family, a multiple sequence
alignment and a phylogenetic tree were con-
structed using Clustal-W.26 Reconstructed ancestral
sequences at nodes throughout the tree were
generated using the Fitch method as described in
Methods.27

We then sought charge reversal replacements in
these families. For each family, positions were
identified where an amino acid replacement
caused a charge reversal between two ancestral
sequences (representing a replacement event that
occurred on a branch between two nodes) or

between a node sequence and a leaf sequence.
Fractional changes were included. Each was asso-
ciated with a particular branch of the tree.

From these, pairs of replacements displaying
charge compensatory behavior were collected, as
described in Methods. A pair of replacements was
defined as being charge compensatory if they
were coincident (both occurring on the same
branch of the tree), if they each individually
would reverse a charge, and taken together, if no
change in the overall charge of the protein resulted
from the two.

A three-dimensional crystal structure for a
member of the protein family was then extracted
from the PDB and an estimate was made for the
strength of the signal. In making this estimate, we
assumed that only proximal charge compensatory
charges, near enough in space in the folded
structure that the two side-chains could interact
coulombically, could be functionally correlated.
We therefore tabulated the distances between the
sites in pairs that suffered charge compensatory
replacements.

Figure 2. Attempted detection of charge compensatory covariation signal using leaf–leaf comparisons. (a) Distri-
bution of distances in 71 protein families between position pairs displaying charge compensatory substitution
(a positive-for-negative substitution at position i, and a negative-for-positive substitution at position j ) (red bars),
using as a reference (green bars) the distribution of all pairwise distances in the proteins. The x-axis is in angstroms;
the y-axis is frequency, with each distribution normalized to unity. Note the absence of considerably taller red bars at
short distances. Total observations in sample: 13,460. (b) As in (a), but using as a reference curve the distances between
all pairs of surface residues (blue bars, .50% exposure, calculated by normalizing its accessible surface area (ASA) by
the standard ASA of the residue. ASA was computed with the DSSP program.46 Total observations in sample: 13,460.
(c) As in (a), but considering only non-contiguous pairs, those where i and j are separated by more than four positions,
with reference to a distribution of distances between all pairs of residues in the reference crystal structures (green
bars). Total observations in sample: 12,811. (d) As in (c), but with reference to the distribution of distance between
surface pairs (blue bars). Total observations in sample: 12,811.
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Histograms were then constructed to show
the distance distribution of pairs suffering
compensatory replacements. As a standard, a dis-
tance distribution for all pairs of sites was calcu-
lated for the proteins. If the number of charge
compensatory pairs was located disproportionately

more in proximal positions than the average pair
(where the square root of the number of pairs was
a crude measure of significance), a signal was con-
sidered significant. As previous studies predicted,
leaf–leaf comparisons found an only barely per-
ceptible charge compensatory signal (Figure 2).

Figure 3. Detecting charge compensatory covariation signal using explicitly reconstructed ancestral sequences.
(a) Distribution of distances in 71 protein families between position pairs displaying charge compensatory substitution
(a positive-for-negative substitution at position i, and a negative-for-positive substitution at position j ) (red bars),
using as a reference (green bars) the distribution of all pairwise distances in the proteins. The x-axis is in angstroms;
the y axis is frequency, with each distribution normalized to unity. Note the greater height of the red bars at both
short distances and at long distances. Total observations in sample: 803.3 (note fractional number reflecting fractional
character assignments in ancestral states; precision is less than implied by the decimal). (b) As in (a), but using as a
reference curve the distances between all pairs of surface residues (blue bars, .50% exposure, calculated by normali-
zing its ASA by the standard ASA of the residue. ASA was computed with the DSSP program.46 Note the greater
height of the red bars at short distances only. This is the compensatory covariation signal. Total observations in sample:
803.3. (c) As in (a), but considering only non-contiguous pairs, those where i and j are separated by more than four
positions, with reference to a distribution of distances between all pairs of residues in the reference crystal structures
(green bars). Total observations in sample: 745. (d) As in (c), but with reference to the distribution of distance between
surface pairs (blue bars). Total observations in sample: 745.5. (e) Distance distribution of charge compensatory pairs
where only one such pair occurs on a specific branch of the evolutionary tree between reconstructed ancestral nodes.
Total observations in sample: 57.2. Note the small sample size. (f) Same as (e), but where the position pair is separated
by more than four positions in the linear sequence. Total observations in sample: 48.3. Note the small sample size.
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That is, pairs of positions suffering charge compen-
satory replacement in two extant sequences were
not much more likely to be near in space than the
average pair. The analogous analysis for each
evolutionary branch in the tree, however, identified
a signal that was clearly perceptible (Figure 3),
even by eye. This signal was then analyzed.

Charge compensation and the surface of the
folded protein

Surprisingly, the initial analysis (Figure 3(a))
showed that position pairs suffering node–node
or node–leaf compensatory charge replacement
were more likely to lie both proximally and distally
in the fold, when compared with the average dis-
tance between all position pairs in the proteins.
That is, pairs of positions near in the fold displayed
charge compensatory covariation more frequently
than the average pair, as expected should charge
compensatory replacement be functionally corre-
lated. But pairs of positions distant in the fold also
displayed charge compensatory covariation more
than the average pair.

Distal charge compensatory replacement
suggested two explanations. First, overall net
charge might be a selected trait in a protein. It is
conceivable, for example, that a constant isoelectric
point is desired by natural selection. If so, rever-
sing a charge at one position would require an
adaptive replacement leading to the opposite
reversal somewhere (anywhere), even at a second
position distant in the fold from the first.

Alternatively, charge changes are more likely to
be tolerated by natural selection, and therefore are
more likely to be observed, if they occur on the
surface of the protein. The mean distance between
a pair of surface residues is greater than the mean
distance between the average pair of residues.
Therefore, charge changes are more likely by
chance to occur in pairs more distant than the
average pair if they occur predominantly in
positions on the surface, whether the pair is under
direct selection or not (i.e. if the replacement is
neutral).

These considerations suggested that the distance
between the average position pair might not be
the most informative reference distribution for
these studies. Instead, an alternative reference dis-
tribution was calculated (blue bars, Figure 3(b))
for the distance between pairs of surface residues
in the model proteins. This new distribution fit
nicely the distal portion of the distribution of dis-
tances between position pairs displaying charge
compensatory replacement. The result implies that
the apparently high occurrence of charge compen-
satory replacement in distal pairs of residues
reflects simply the greater likelihood that charge
reversal replacements occur on the surface of the
protein. This surface pair reference distribution
does not, however, fit the proximal portion of the
distribution. The probability that a pair of positions
displaying charge compensatory replacement is

near in the folded structure is considerably higher
than expected (Figure 3(b)). This represents the
“signal” in the charge compensatory pattern of
replacement. When a side-chain changes its charge,
that charge is more likely to be accompanied by a
compensatory change in the charge of another
side-chain near in space to the first.

Charge compensation in both contiguous and
non-contiguous position pairs

We then explored several features of this signal.
First, we asked whether the signal arises only in
positions that were also nearby in the polypeptide
sequence (contiguous pairs), or whether it was
also observed in residue pairs .4 positions distant
(those of i, i þ q relationship, where q . 4) in the
sequence (non-contiguous pairs). A strong signal
was also observed for non-contiguous pairs (Figure
3(c) and (d)) as well as for contiguous pairs. This
implies that a charge compensatory replacement
signal arises when two residues are near in space
as a consequence of the tertiary fold, as well as if
they are near in space because they are near in the
sequence.

Enhancing the charge compensation signal

These results showed that node–node and
node–leaf analyses generated a more perceptible
charge compensatory covariation signal than leaf–
leaf analyses. Nevertheless, the signal remained
small.

We considered several explanations for the small
size of the signal. First, we considered a case where
four sites suffer charge reversal replacements in a
single evolutionary episode. Site a suffers a (þ to
2 ) replacement compensated by a (2 to þ )
replacement at site b. Site c suffers a (þ to 2 )
replacement compensated by a (2 to þ ) replace-
ment at site d. Sites a and b are proximal; Sites c
and d are proximal. Compensatory changes at
sites b and d are required to maintain a functional
protein given changes at sites a and c, respectively.
Two pairs that do not represent adaptively signifi-
cant compensation (a; d and b; c) arise in addition
to the two pairs that do (a; b and c; d). This is
simply another way of saying that changes that
need compensation are more noticeable when the
total number of changes is small.

Therefore, we asked whether the signal was
stronger if the only branches examined were those
holding exactly one pair of charge compensatory
replacements (Figure 3(e) and (f), for all pairs and
non-contiguous pairs, respectively). The likelihood
that two positions undergoing charge compen-
satory replacement are near in space was indeed
more perceptible after we excluded all of the
events occurring on branches where more than
two positions suffered charge reversal. The num-
ber of cases was small, however (57 for all pairs,
and 48 for non-contiguous pairs, respectively),
and the plots accordingly displayed substantial
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variances. As the number of sequences in the data-
base grows, trees will become more articulated,
individual compensatory events will be more
likely to be isolated from others on a single branch
of the tree, and the signal should strengthen.

Charge compensation in specific secondary
structural elements

We then examined more closely the contiguous
position pairs (i, i þ 4 or nearer) displaying charge
compensatory covariation. The most striking
feature of the charge compensatory signal within
contiguous pairs was its dependence on the nature
of the secondary structural element that held those
positions (Figure 4). In 98% of the cases where the
positions showing compensatory replacement had
an i; i þ 4 relationship, one or both of the residues
was found in an a helix. In only 1.6% of these
cases was one of the residues found in a b strand,
and in none of the cases were both found in a
strand. This was significantly larger than the 47%
of the position pairs with an i; i þ 4 relationship
having one or both residues in a helix found in
the dataset as a whole (Table 1). Conversely, in
49% of the cases where the position pair showing
compensatory substitution had an i; i þ 2 relation-
ship, one or both of the residues was found in a b
strand.

Two alternative explanations can be proposed
to account for the secondary structure bias. First,
surface helices present residues to solvent (water)
once every 3.6 turns. Surface residues are expected
to be less constrained by function from diverging
(that is, single replacements are more likely to be
neutral), and are more likely than the average resi-
due to suffer charge reversal substitutions. There-
fore, the abundance of compensatory changes
occuring with i; i þ 3 or i; i þ 4 relationship in the
sequence might simply reflect unconstrained (i.e.
neutral) charge reversal at surface positions.

Alternatively, loss of a coulombic interaction
between residues i and i þ 3 or i þ 4 might lead to
a protein less able to contribute to the fitness of
the host. This view implies that once a charge
reversal substitution occurs at position i, position
i þ 4 is under sufficient positive selection
to acquire a compensating charge reversal
substitution.

Figure 4. Predicting secondary structure using con-
tiguous pairs of compensatory changes. The relative sizes
of the “pies” indicates the relative numbers of examples
of each pair. Where position pairs are separated by 1–5, or
6 positions, the likelihood that residue pairs are both
found in helices (red), both found in strands (dark green),
one in a helix and the other in a coil (pink), one in a strand
and the other in a coil (light green), one in a helix and the
other in a strand (violet), and both found in coils. Note an
observation that if two charge compensatory substitutions
are observed with a i; i þ 4 relationship, one or both are
98% likely to lie in a helix. The total number of obser-
vations; i; i þ 1 ¼ 12:82; i; i þ 2 ¼ 6:47; i; i þ 3 ¼ 11:38;
i; i þ 4 ¼ 23:37; i; i þ 5 ¼ 4:79; i; i þ 6 ¼ 6:48: Note frac-
tional values and the small size of these samples.

Table 1. Frequencies of the average contiguous position pairs participating in a helix versus strand

Relationship between the pair in the protein sequence

Pair i; i þ 1 i; i þ 2 i; i þ 3 i; i þ 4 i; i þ 5 i; i þ 6

EE 0.185 0.146 0.119 0.099 0.087 0.079
EC 0.077 0.148 0.192 0.219 0.234 0.239
Strand 0.262 0.294 0.311 0.318 0.321 0.318

HE 0.003 0.011 0.022 0.033 0.044 0.055
HH 0.307 0.274 0.243 0.223 0.208 0.194
HC 0.072 0.132 0.184 0.214 0.233 0.249
Helix 0.382 0.417 0.449 0.470 0.485 0.498

CC 0.356 0.289 0.241 0.212 0.195 0.185

Total 1.00 1.00 1.00 1.00 1.00 1.00

Total sample 12.8 6.5 11.4 23.4 4.8 6.5

EE, both positions involved in a charge compensatory event found in strands; EC, one in a strand and the other in a coil; Strand:
HE, one in a helix and the other in a strand; HH, both in helices; HC, one in a helix and the other in a coil; Helix: CC, both in coils.
Calculated from the test set of reference crystal structures using DSSP.46 Note the small number of observations in each sample, and
the fractional number of changes arising from parsimony reconstructions.
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To explore these alternatives, we sought
examples of anti-compensatory charge reversals,
where a charge reversal (þ to 2 , for example)
was accompanied by another charge reversal sub-
stitution in the same direction (þ to 2 ) (Figure 5).
The histogram showing the distance distribution
in pairs suffering compensatory covariation is
shown in Figure 5. Here, the distribution of dis-
tances between position pairs carrying charge
anti-compensatory substitution was not noticeably
different from the distribution of distances
between all surface position pairs (Figure 3(b)).
Notable is the absence of an increased probability
of proximal anti-compensatory pairs (compare
with Figure 3).

As a predictive tool, this enhanced charge
compensatory signal may prove to be most
valuable in secondary structure prediction. The
accuracy of a prediction made on the relative
positions of a compensatory pair is extremely
high. The “coverage” is low, however. Only a few
dozen examples were observed; only 6.8% of the
helices contained within the 71 test families have
one or more charge compensatory position pair.
This number will, of course, grow as the size of
the protein families grows with the increasing size
of the genomic database (Table 2).

Charge compensation in buried residues

The high dielectric constant of water is known to
weaken coulombic interactions between charged
species. We therefore asked whether a stronger
signal might be found in position pairs where one
or more of the side-chains was buried. Figure 6(a)
shows the distribution of surface accessibility
calculated for all charged amino acids (DEKR, or
Asp, Glu, Lys, and Arg) (blue), those that partici-
pate in a position pair suffering charge com-
pensatory substitution (red), and those that
participate in a position pair suffering charge
anti-compensatory substitution (green). Not

surprisingly, most buried charged residues do not
suffer charge reversal within the test set. Compen-
satory changes near in space (Figure 6(b)) were
slightly more likely to be found in positions that
were more buried, a modest signal that suggests
that compensation is more necessary in partly
buried sites shielded from the high dielectric
constant presented by the solvent water. This is
the case for those residue pairs in protein kinase15

and phosphoglycerate kinase17 where charge com-
pensatory substitution has had predictive value.

Discussion

Explicit reconstruction of ancestral proteins has
been shown to provide insight into the structure
and function of protein families, both when done
in silico,27 – 29 and when recombinant DNA tech-
nology is used to resurrect ancestral proteins from
extinct organisms so they can be studied in the
laboratory.30 – 33

The work reported here applies ancestral recon-
structions towards a new goal. We suggest several
conclusions. First, node–node and node–leaf
comparisons between reconstructed ancestral
sequences provide a stronger compensatory
covariation signal than the leaf–leaf comparisons
that have been used previously in the search for a
compensatory covariation signal.

These results are consistent with the model out-
lined in Introduction, which holds that amino acid
replacements that dramatically alter the physical
property of the side-chain will disrupt the per-
formance of a protein to an extent that requires a
compensatory change elsewhere in the protein
structure a significant number of times. The fitness
value of the protein can be restored only by a
second change that compensates for the first altera-
tion in physical properties. In the language of
neutral theory, we would say that the first replace-
ment was selectively advantageous, the second
was positively selected (in the context of the first),

Figure 5. Distribution of distances between charge anti-compensatory pairs (red bars) (a) relative to all pairwise
distances (green bars) and (b) relative to pairwise distances between all pairs of surface residues (blue bars, .50%
exposure). Notable is the absence of the increased probability of proximal anti-compensatory pairs (compare with
Figure 3). The total number of observations in both distributions is 793.3.
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Table 2. List of 71 protein families used in this analysis

ID L N Protein name

121P 166 60 H-Ras P21 protein
193L 129 43 Lysozyme
1AAF 55 38 Hiv-1 nucleocapsid protein
1AAK 152 20 Ubiquitin conjugating enzyme
1ARS 396 28 Aspartate aminotransferase
1ATP(E) 350 20 c-AMP-dependent protein kinase
1BET 107 14 Beta-nerve growth factor
1BP2 123 64 Phospholipase A2
1CCR 112 93 Cytochrome c
1CPC(B) 172 44 C-Phycocyanin
1CYO 93 17 Cytochrome B5 (oxidized)
1DLH(A) 180 28 Hla-Dr1 (Dra, Drb1 0101) human class II histocompatibility protein (extracellular domain)
1DLH(B) 188 45 Hla-Dr1 (Dra, Drb1 0101) human class II histocompatibility protein (extracellular domain)
1EFT 405 57 Elongation factor Tu (Ef-Tu)
1FRP(A) 335 18 Fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase)
1FVL 70 29 Flavoridin
1FXI(A) 96 69 Ferredoxin I
1GDD 353 51 Gaunine nucleotide-binding protein G(I)
1GP1(A) 198 16 Glutathione peroxidase
1HAR 216 36 Hiv-1 reverse transcripts (amino-terminal half)
1HCN(A) 92 26 Human chorionic gonadotropin
1HDG(O) 332 109 Holo-D-glyceraldehyde-3-phosphate dehyrogenase
1HGE(A) 328 70 Hemagglutinin
1HLE(A) 345 14 Horse leukocyte elastase inhibitor
1HMT 132 16 Fatty acid binding protein
1HPM 386 128 44K Atpase fragment (N terminal) of 70 kDa heat-shock cognate protein
1HRA 80 42 Retinoic acid receptor
1HRY(A) 76 43 Human sry
1HTB(A) 374 56 Beta-3 alcohol dehydrogenase
1HTM(D) 138 92 Hemagglutinin ectodomain (soluble fragment, Tbha2)
1HUR(A) 180 35 Human Adp-ribosylation factor 1
1HUW 166 31 Human growth hormone
1HVD 319 23 Annexin V
1IRK 306 17 Insulin receptor (tyrosine kinase domain)
1ITG 166 42 Hiv-1 integrase (catalytic domain)
1IVD 388 23 Influenza A subtype N2 neuraminidase (sialidase)
1LDM 329 27 M4 lactate dehydrogenase
1MHC(A) 282 143 Mhc class I antigen H2-M3
1MLS 154 74 Myoglobin
1NDH 272 27 Cytochrome B5 reductase
1NHK(L) 144 26 Nucleoside diphosphate kinase
1NIP(A) 289 35 Nitrogenase iron protein
1OCT(C) 156 33 Oct-1 (Pou domain)
1OSA 148 64 Calmodulin
1PBX(A) 143 56 Hemoglobin
1PDN(C) 128 28 Prd paired domain
1PLQ 258 13 Proliferating cell nuclear antigen
1PVC(2) 271 24 Poliovirus type 3, Sabin strain
1REC 201 21 Recoverin
1SXC(A) 151 51 Superoxide dismutase
1TGX(A) 60 51 Toxin gamma
1TIV 86 24 Hiv-1 transactivator protein
1TPH(1) 247 35 Triosephosphate isomerase
1YTB(A) 180 18 TATA-box binding protein
1ZAA(C) 87 18 Zif268 immediate early gene
2BTF(A) 375 121 Beta-actin-profilin complex
2CPL 165 35 Cyclophilin A
2GDM 153 23 Leghemoglobin
2HMX 133 40 Human immunodeficiency virus type 1 matrix protein
2HPE(A) 99 36 Hiv-2 protease
2REB 352 58 Rec A protein
2TGI 112 18 Transforming growth factor-b 2
3RUB(S) 123 79 Ribulose 1,5-bisphosphate carboxylase/oxygenase (form III)
4ENL 436 35 Enolase
4FGF 146 16 Basic fibroblast growth factor
4GCR 174 31 Gamma-B crystallin
4MT2 62 50 Metallothionein isoform II
4RHV(1) 289 24 Rhinovirus 14
4RHV(3) 236 24 Rhinovirus 14
7RSA 124 48 Ribonuclease A
8CAT(A) 506 34 Catalase

ID, Protein Data Bank identifier, protein subunit in parentheses; L, chain length; N, number of sequences in multiple sequence
alignment.
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and both together are neutral. Thus, while the two
compensatory substitutions taken together might
be regarded as collectively neutral, the second
mutation in a truly compensatory pair is viewed
as positively adaptive in this model.

These results also suggest that as the database
grows, the charge compensatory signal will
become more perceptible as more sequences are
added to each family. More sequences mean more
highly articulated evolutionary trees. This, in turn,
means that compensatory events will become
better isolated on specific branches, preventing the
“spurious” signals that arise when more than one
pair of compensatory events occurs along a specific
branch on a tree.

The stronger signal will undoubtedly find use.
Predicting secondary structure using contiguous
pairs of compensatory changes is one. It remains
to be seen, however, how much data in a family is
required for the signal to be useful to support de
novo assembly of a protein fold in a prediction
setting.

Accounting for the stronger signal from node–
node comparison

The tools that we have presented make the
compensatory covariation signal more perceptible.
Isolation of truly compensatory pairs on shorter
branches of a tree away from other changes is, we

believe, sufficient explanation for this effect.
Shorter branches implies a smaller n, the total
number of differences between the two protein
sequences being compared, diminishing the
number of n(n 2 1)/2 pairs behind which the
compensatory signal might be obscured.

While it is possible in principle to construct a
statistical model that permits double replacements
to be evaluated, this requires a high degree of
empirical parameterization. For example, nearly a
decade ago, we collected the parameters needed
to build a statistical model that concerned double
replacements at adjacent sites.11 Some 220 para-
meters are formally required in this exercise, a
large number by most measures.

For the purpose of this work, a signal is
considered to be significant if it lies two standard
deviations outside of the fluctuation expected for
n sites at a specified distance. This can be estimated
by the square root of the number of sites. By this
measure, all of the results reported here are
strongly significant, with the exception of those
reported in Figures 3(e),(f), and 4.

A model-independent method to evaluate an
evolutionary tree

The strength of the compensatory covariation
signal undoubtedly depends on the degree to
which the trees and the reconstructed ancestral

Figure 6. Surface accessibility of
charged residues, and charged
residues participating in a charge
compensatory event. (a) A frequency
versus accessibility distribution for
all Asp, Glu, Lys, and Arg (DEKR)
residues (blue), those participating
in a charge compensatory (red) and
anti-compensatory (green) events.
Bars of each color sum to unity.
Buried DEKR residues are less
likely than average to suffer charge
reversal substitution. Compensated
charge reversal substitutions are
slightly more likely than anti-
compensated charge reversal sub-
stitutions. The total number of
observations in sample: anti,
2812.4; comp, 2792.2; DEKR, 3530.0.
(b) A frequency versus accessibility
distribution showing the frequency
of compensated charge reversals
for proximal pairs near in space
(less than 12 Å distant, red) in the
folded structure, and distal pairs
distant in the folded structure
(more than 12 Å distant, green).
A pair of charged compensatory
substitutions is slightly more likely
to be near in space if the side-chains
involved are more buried. The total
number of observations in sample:
near, 367.1; far, 795.7.
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sequences accurately reflect the history of the
family. If the branching of the tree or the recon-
structed sequences themselves are not correct, a
pair of charge compensatory replacements that are
coincident, in fact, may not be assigned to the
same branch of a tree. In this case, the signal from
this pair will be lost.

Getting the branching correct in an evolutionary
tree is a difficult problem. Part of the difficulty
arises because of the trade-off between the accu-
racy of the tree and the cost of generating it. For
example, the Clustal-W26 and Fitch parsimony
tools used here are relatively inexpensive methods
for reconstructing trees and ancestral sequences.
Clustal-W uses a neighbor joining tool34 based on
estimates of the distances between sequence pairs
derived from the Kimura empirical formula.14

Ancestral sequences reconstructed by parsimony
are well known to be sensitive to incorrect
branching topology. This is the principal error
associated with the choice of this inexpensive
reconstruction tool.

More sophisticated methods, including maxi-
mum likelihood methods, are expected to provide
better trees, at least given the first-order stochastic
models. These are expected to generate ancestral
reconstructions that are more robust to errors in
tree topology. They are, however, more expensive.

Even the more expensive tools do not guarantee
a correct tree, of course. In practice, the approxi-
mations made in the model (see Introduction)
may create systematic error larger than fluctuation
error. To date, the only way to benchmark a tree
requires knowledge of the evolutionary history of
the sequences in question,35 or a reconstruction
of a simulated evolutionary process.36 The first
is difficult to get for sequences emerging
from natural history. The second requires a
mathematical model for evolution, which is often
the same one that is used to construct the tree in
the first place.

Here, the compensatory covariation signal,
extracted from reconstructed ancestral sequences,
may provide a metric for the quality of a tree
based on organic chemistry, independent of any
mathematical model for evolution. Hypothetically,
the best tree should be the tree that places compen-
satory replacements truly driven by natural
selection on the same branch. This requires the
construction of a tree that reflects the actual
evolutionary history. This, in turn, implies that the
tree that has the most compensatory covariation is
the tree that is most likely to reflect the actual
history.

To illustrate this application, consider four
hypothetical proteins, just four amino acids in
length, having the sequences ALKD, MVKD,
ALER, and MVER. Exactly two topologies exist
for unrooted trees that relate these four sequences
(Figure 7). Both reconstructions have two ambigu-
ous sites in both ancestors. In Topology I, the first
two positions are ambiguous, and in Topology II,
the last two positions are ambiguous. Both trees

require four “homoplastic” events (independent
mutations that cause sequence convergence). Both
trees require exactly six changes. Classical par-
simony therefore ranks these two topologies as
equally likely.

The two topologies are different, however, with
respect to the extent to which charge changes are
compensated. In Topology I, a charge altering
replacement is 100% likely to be compensated. In
Topology II, however, a charge altering replace-
ment is only 50% likely to be compensated. This is
illustrated in Figure 7 by writing out four trees,
each equally likely, that carry reconstructions that
the ambiguities require. If we postulate that com-
pensatory covariation is maximized, then Topology
I is preferred to Topology II.

Conversely, an analogous logic can be used to
assign preferred ancestral states involving charged
residues. For Topology I, the ancestral states invol-
ving charged residues are fixed. For Topology II,
the preferred ancestral sequences are in reconstruc-
tions IIa and IIb.

This metric can be applied even if no crystal
structure is available for a protein family. If,
however, a crystal structure is available, then (as a
practical matter) one would maximize the number
of proximal charge compensatory changes when
identifying the preferred tree.

It will require much future work with many
families to determine how useful the metric will
be. Worth noting at this point, however, is that
this metric is rooted in principles of structural
biology (that is, organic chemistry), not in a
mathematical formalism. Further, the proposed
metric values changes at position i in light of
changes at position j. Thus, this metric for evalu-
ating the quality of a tree is fundamentally
different from any metric based on first-order
stochastic analyses of protein sequences, which
treat replacements at site i and site j as
independent.

Darwinian requirements for
compensatory covariation

Even given these results, and the evidence that
the charge compensatory substitution signal can
only become stronger as the database grows, it
remains inescapable that the charge compensatory
signal is weak, perhaps even weaker “than
expected”. What might be the scientific impli-
cations of this observation?

Charge compensatory covariation might be weak
because the coulombic interactions being sought
may themselves be largely unimportant to the
selective fitness of proteins. Gaining or losing
them, in this view, has insufficient impact on
fitness to ensure that natural selection will require
compensation, and thereby prevent uncompen-
sated charge reversals from entering the global
proteome. This implies a limit to the tool generally,
one imposed by the physical organic chemistry of
folded protein sequences.
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An alternative explanation should be con-
sidered, however. Observation of a compensatory
pair of substitutions implies, under the neutral
theory, that natural selection preserved some
global feature of a protein during the episode
represented by the branch between two nodes.
This, in turn, implies some degree of constancy in
the behavior of the protein before and after the
episode where compensatory change has occurred.

In this view, compensatory replacement should
be observed only in protein families whose beha-
vior must remain largely constant during this
branch. This, in turn, implies that compensatory
covariation should be observed only during
episodes where function, defined as the behavior
that contributes to fitness, is largely conserved. In
the language of the neutral theory, the demand for
compensation arises because the protein is opti-
mized at the beginning of the episode for fitness,
the same behaviors are optimal at the end of the
episode, and any replacements occurring during
the episode must have the net (and, if necessary,
combined) impact of being neutral with respect to
their impact on selected behavior.

This implies, of course, that when functional
behavior is changing, there may be no need to
compensate individual replacements in a sequence,
even those that reverse charge. Indeed, an uncom-
pensated change may be more likely to generate a
protein with different behaviors, whose (now)
different behaviors contribute most to the (now
different) requirements for fitness. In this view,
compensatory covariation should not be observed,
or should be observed less frequently, whenever
functional behavior is changing.

In this view, compensatory covariation is scarce
because branches of an evolutionary tree where
functional behavior is rigorously conserved are
scarce. This is, of course, a controversial sugges-
tion. Many computational biologists treat homolo-
gous proteins in distinct organisms as if they were
“the same protein”, and neutral theory remains
the majority view of protein sequence evolution.
In contrast, recent work in these laboratories and
elsewhere has suggested that functionally signifi-
cant divergence in behavior is frequent, and may
be the rule more than the exception. For example,
it is almost certainly observed in elongation factors,

regarded as some of the most functionally con-
served proteins in the biosphere.5

Given this observation, compensatory replace-
ments may become a powerful tool in functional
genomics to detect episodes where function is,
and is not, conserved. A branch that has more
compensatory replacement is more likely to
represent an episode where functional behavior
is constant than one with less compensatory
replacement.

This is relevant to the issue of “annotation
transfer” in comparative proteomics. Annotation
transfer assigns the function of a new protein by
identifying in the database a homologous protein
for which the function is known, and transferring
annotation describing that function to the anno-
tation for the new protein. Annotation transfer
assumes that function does not change within a
set of homologous protein sequences as they
diverge.37,38 This assumption has long been known
to be poor in many proteins, including many
characterized before the dawn of the age of the
genome.39

To date, several tools have been suggested to
detect functional change. One of these is to
measure Ka/Ks values for branches of an evolution-
ary tree between reconstructed ancestral sequences
at the nodes of the tree.28,40 Here, compensatory
changes would indicate functional constancy, while
uncompensated changes would indicate functional
change. Because compensatory analysis rests on
protein sequences, while the Ka/Ks value requires
measurement of silent substitution rates, and
because silent substitution rates are frequently
rather high, this metric for functional recruitment
may ultimately prove to be more valuable than
Ka/Ks ratios, especially for deeply branching
sequences.

Methods

The core of this study exploited the PDB “select 25”
subset of proteins.41 Each protein in this database was
matched against the proteins contained in SWISS-PROT
(version 33).42 The older sequence dataset was chosen to
avoid under-annotated sequences, in particular, pseudo-
genes that might be divergently evolving without
functional constraints. Families that contained at least

Figure 7. A schematic illustration of the use of compensatory covariation to select a preferred tree from two equally
parsimonious trees. The two tree topologies relating the four sequences (ALKD, MVKD, ALER, and MVER) each
require six changes. The changes are marked on individual branches, with fractional changes arising from the ambi-
guity in the ancestral sequences. The ancestral sequences are placed at the nodes in the tree, with ambiguous sites
(by parsimony) noted by placing the two possible residues above and below a horizontal line. For each topology, iden-
tical trees holding all four possible ancestral sequences are shown. Each, by parsimony, has equal likelihood (0.25 for
each). In Topology I, the ancestral sequences are ambiguous at the first two positions and in Topology II, at the last
two positions. Both trees require the same amount of homoplasy (convergence). Classical parsimony analysis is indif-
ferent with respect to the two topologies. In Topology I, however, the likelihood that a charge reversal is compensated
is unity. In Topology II, it is only 0.5. Thus, Topology I is preferred if compensatory covariation is maximized. This
criterion is independent of mathematical formalisms used to construct the tree. Further, the metric weights changes
at position i depending on events at position j, making this metric for evaluating a tree fundamentally different from
any metric based on a first-order stochastic analysis of protein sequences.
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12 members, where the maximum evolutionary distance
between any pair of sequences in the family was between
50 and 120 PAM units, and where the family had at least
two subfamilies defined at PAM 20 with four or more
members, were retained. These criteria, made to ensure
a balanced tree, were satisfied by 71 families.

The sequences within each family were aligned using
the MultAlign package43 with the option PROB from
Darwin system.44†45 The gap shifting heuristic was
applied iteratively until the overall alignment score
ceased to improve. Secondary structure assignments
were extracted from the crystallographic data using
DSSP.46

An evolutionary distance matrix and a phylogenetic
tree were computed for each family using Clustal-W,26

which employs a neighbor joining method using
distances derived from Kimura empirical formula.14

Branches with negative lengths were ignored.
Probabilistic reconstructed ancestral sequences at

nodes in the tree were then built using the Fitch parsi-
mony method.27 For those sites where parsimony did
not generate a single assigned residue in an ancestral
sequence, fractional probabilities were assigned to each
of the contender amino acids by the statistical method
described by Fitch.27 The statistical method was used to
assign probabilities to each possible path between the
residue at a site at an ancestral node residue (either a
single amino acid or a set of possible amino acids each
with an assigned probability) and its two descendant
residues (either a residue in an extant species’ sequence
(a node–leaf comparison) or a residue (or set of possible
amino acids) in another ancestral species (a node–node
comparison)).

Using probabilistic reconstructed ancestral sequences
computed in this way, charge compensation was sought
on individual branches of the evolutionary trees. For
each branch in each tree, the sequences at the flanking
nodes were compared (residue by residue) to identify
single substitutions that reversed charge. A position
was retained if and only if one of the following transition
probabilities (K ! E, K ! D, R ! E, R ! D, E ! K,
E ! R, D ! K, D ! R) was .0.2. If more than one
probability was .0.2, then both transition probabilities
were retained for that position.

Coordinates locating the position of C-b were then
extracted from the reference crystal structure with the
PDB. When the residue was Gly, the position of the b
carbon atom was inferred from the position of the back-
bone atoms. A Perl script was written to permit calcu-
lation of the distances between the b carbon atoms for
each pair of amino acids retained. This generated the
distances reported in the Figures. The accessible surface
area (ASA) was computed using the DSSP program.46

A list was then made of all pairs of positions having
compensatory charge reversals for each branch of the
tree. These were defined to be “position pairs” under-
going charge compensatory covariation. The distance
between the b carbon atoms of the position pairs was
inferred from the positions of those two carbon atoms in
the reference crystal structure. The pairwise distance
was then calculated for all amino acids in the reference
crystal structure, and then for the distance between
pairs of residues on the surface of the reference structure.
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