10.1021/ol006894+ CCC: \$20.00 © 2001 American Chemical Society Published on Web 01/11/2001

NHCHO,¹⁶ OAc,¹⁶ and OC(S)Ph¹⁷), which act as directing groups and are removed after the glycosylation event. The (5) Schene, H.; Waldmann, H. J. Chem. Soc., Chem. Commun. **1998**,

challenging, because the absence of a functionality at C-2

excludes neighboring group assistance during glycosylation

and furthermore enhances the lability of the resulting 2-deoxyglycosidic linkages. Direct glycosylation with 2-deoxy-

glycosyl donors provides the α -glycosides dominantly as

controlled by the anomeric effect.⁵ 2-Deoxy- β -glycosides

have mostly been synthesized by using donors with equatorial

C-2 heteroatom substituents (e.g., Br,⁶ I,⁷ SR,⁸⁻¹⁴ SeR,¹⁵

Stereoselective Synthesis of 2-*S*-Phenyl-2-deoxy-β-glycosides Using Phenyl 2,3-*O*-Thionocarbonyl-1-thioglycoside Donors via 1,2-Migration and Concurrent Glycosidation

Biao Yu* and Zunyi Yang

State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

byu@pub.sioc.ac.cn

Received November 20, 2000

ABSTRACT

R₁0 HOR MeOTf MeS

1,2-Migration and concurrent glycosidation of phenyl 2,3-O-thionocarbonyl-1-thio- α -L-rhamnopyranosides under the action of methyl trifluoromethanesulfonate (MeOTf) afforded in high yields the 3-O-(methylthio)carbonyl-2-S-phenyl-2,6-dideoxy- β -L-glucopyranosides, ready precursors to the corresponding 2-deoxy- β -glycosides.

2-Deoxyglycosides exist as important structural components in many antibiotics (e.g., macrolides, anthracyclins, aureolic acids, and enediynes),¹ cardiac glycosides,² and pregnane glycosides.³ Consequently, considerable efforts have been given to the synthesis of 2-deoxyglycosides.⁴ In comparison to the synthesis of other glycosides, stereocontrolled construction of the 2-deoxyglycosidic linkages is particularly

(1) Kirsching, A.; Bechtold, A. F.-W.; Rohr, J. Top. Curr. Chem. 1997, 188, 1.

LETTERS 2001 Vol. 3, No. 3 377-379

ORGANIC

 ⁽⁵⁾ Schene, F., Waldmann, H. J. Chem. Soc., Chem. Commun. 1998, 2759 and references therein.
 (6) (a) Thiem, J.; Schöttmer, B. Angew. Chem., Int. Ed. Engl. 1987, 26,

^{(6) (}a) Thiem, J.; Schöttmer, B. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 555. (b) Thiem, J.; Gerken, M. *J. Org. Chem.* **1985**, *50*, 954 and references therein.

^{(7) (}a) Roush, W. R.; Gung, B. W.; Bennett, C. E. Org. Lett. 1999, 1, 891. (b) Roush, W. R.; Bennett, C. E. J. Am. Chem. Soc. 1999, 121, 3541.
(c) Roush, W. R.; Hartz, R. A.; Gustin, D. J. J. Am. Chem. Soc. 1999, 121, 1990.

⁽²⁾ Deepak, D.; Srivastava, S.; Khare, N. K.; Khare, A. Cardiac Glycosides. In *Fortschritte der Chemie Organischer Naturstoffe*; Herz. W., Kirby, G. W., Moore, R. E., Steglich, W., Tamm, Ch., Eds.; Springer-Verlag: Wien, New York, 1996; Vol. 69, pp 71–155.

⁽³⁾ Deepak, D.; Srivastav, S.; Khare, A. Pregnane Glycosides. In *Fortschritte der Chemie Organischer Naturstoffe*; Herz. W., Kirby, G. W., Moore, R. E., Steglich, W., Tamm, Ch., Eds.; Springer-Verlag: Wien, New York, 1997; Vol. 71, pp 169–325.

⁽⁴⁾ For reviews, see: (a) Boons, G.-J. Contemp. Org. Synth. 1996, 173.
(b) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503. (c) Thiem, J.; Klaffke, W. Top. Curr. Chem. 1990, 154, 285.

preparation of these donors often requires specialized methods. 1,2-Migration and concurrent glycosidation of 1-thioglycosides provides a facile stereocontrolled approach to the synthesis of 2-thioglycosides.^{9–14} The migration is facilitated by a "pull" from the C-2 initiated by the departure of a leaving group and a "push" from the ring oxygen lone pair of electrons, providing the groups involved are in transconfiguration. A 1,2-episulfonium is believed to be involved, resulting in the stereoselective formation of the 1,2-trans glycosides.¹⁸ The "pull" has been installed by a mesyl,⁹ hydroxyl (under the action of the Mitsunobu conditions¹⁰ or DAST^{8a}), a phenoxythiocarbonyl group¹¹ (upon subjection to NIS/TfOH), or incidentally, a 2,3-O-ortho ester, ¹² or even a remote 3,4-O-benzyldioxonium cation.¹³ We recently reported that ethyl(phenyl) 2,3-O-ethoxyethylidene-1-thio- α -mannopyranosides were easily accessible donors for the expeditious preparation of 2-S-ethyl(phenyl)-2-deoxy- β glucopyranosides via 1,2-migration and concurrent glycosidation; however, an inherent competing glycosidation by the ethoxy group resulting from the 2,3-ortho ester donors diminished the utility of this protocol¹⁴ (Scheme 1). To

circumvent this drawback, we developed phenyl 2,3-O-thionocarbonyl-1-thio- α -mannopyranosides as donors instead. Some preliminary results are herewith reported.

378

Phenyl 4-*O*-methyl-2,3-*O*-thionocarbonyl-1-thio- α -L-rhamnopyranoside (2) was readily prepared from 2,3-diol 1 in the presence of 1,1'-thiocarbonyldiimidazole in refluxing THF (2 h, 81%) (eq 1). It was known that the sulfur of the

thionocarbonyl moiety was prone to be methylated with methyl iodide,¹⁹ and on the other hand activation of the anomeric alkylthio group of a thioglycoside with MeOTf was also viable.²⁰ We anticipated that the former process would prevail upon treatment of 2,3-*O*-thionocarbonate **2** with MeOTf to generate the 2,3-*O*-methylthiodioxonium cation, which would then lead to the 1,2-episulfonium intermediate and finally the 1,2-migration glycosidation product in the presence of an alcohol acceptor. Indeed, when benzyl alcohol, cyclohexanol, cholesterol, and sugar alcohols **3**, **4**, and **5**²¹ were employed as acceptors, the expected 3-*O*-(methylthio)-carbonyl-2-*S*-phenyl-2,6-dideoxy- β -L-glucopyranosides **6**–**11** were readily obtained in satisfactory yields (eq 2 and Table

HOR = Benzyl alcohol, cyclohexanol, cholesterol, and

1). No α -anomers were detected.²² A typical reaction involved the addition of MeOTf (1.2 equiv) to a mixture of the donor (1.0 equiv), acceptor (1.5 equiv), and 4Å molecular sieves in methylene chloride at room temperature, leading

(21) Helm, R. F.; Ralph, J. J. Org. Chem. 1991, 56, 7015.

(22) The ¹H NMR signals for the corresponding 3-O-(methylthio)carbonyl-2-S-phenyl-2,6-dideoxy- β -L-glucopyranosyl residue are very diagnostic. In compound **6** (for an example): δ 5.06 (dd, 1 H, J = 11.4, 9.0, H-3), 4.35 (d, 1 H, J = 8.9, H-1), 3.46 (s, 3 H, OCH₃), 3.31 (m, 1 H, H-5), 3.08 (dd, 1 H, J = 11.4, 8.8, H-4), 2.94 (t, 1 H, J = 9.1, H-2), 2.41 (s, 3 H, SCH₃), 1.34 (d, 3 H, J = 7.5, H-6).

^{(8) (}a) Nicolaou, K. C.; Ladduwahetty, T.; Randall, J. L.; Chucholowski,
A. J. Am. Chem. Soc. 1986, 108, 2466. (b) Ito, Y.; Ogawa, T. Tetrahedron Lett. 1987, 28, 2723. (c) Preuss, R.; Schmidt, R. R. Synthesis 1988, 694.
(d) Hashimoto, S.; Yanagiya, Y.; Honda, T.; Ikegami, S. Chem. Lett. 1992, 1511. (e) Roush, W. R.; Sebesta, D. P.; Bennett, C. E. Tetrahedron 1997, 53, 8825. (f) Roush, W. R.; Sebesta, D. P.; James, R. A. Tetrahedron 1997, 53, 8837. (g) Franck, R. W.; Marzabadi, C. H. J. Org. Chem. 1998, 63, 2197.

^{(9) (}a) Johnston, B. D.; Pinto, B. M. J. Org. Chem. **2000**, 65, 4607. (b) Ryan, K. J.; Acton, E. M.; Goodman, L. J. Org. Chem. **1971**, 36, 2646.

⁽¹⁰⁾ Viso, A.; Poopeiko, N.; Castillón, S. *Tetrahedron Lett.* **2000**, *41*, 407.

^{(11) (}a) Zuurmond, H. M.; van der Klein, P. A. M.; van der Marel, G. A.; van Boom, J. H. *Tetrahedron Lett.* **1992**, *33*, 2063. (b) Zuurmond, H. M.; van der Klein, P. A. M.; van der Marel, G. A.; van Boom, J. H. *Tetrahedron*, **1993**, *49*, 6501.

⁽¹²⁾ Auzanneau, F.-I.; Bundle, D. R. Carbohydr. Res. 1991, 212, 13.

⁽¹³⁾ Ziegler, T.; Herold, G. Liebigs Ann. Chem. 1994, 859.

⁽¹⁴⁾ Yu, B.; Yang, Z. Tetrahedron Lett. 2000, 41, 2961.

 ^{(15) (}a) Perez, M.; Beau, J.-M. *Tetrahedron Lett.* **1989**, *30*, 75. (b) Díaz,
 Y.; El-Laghdach, A.; Matheu, M. I.; Castillón, S. J. Org. Chem. **1997**, *62*, 1501.

⁽¹⁶⁾ Trumtel, M.; Tavecchia, P.; Veyriéres, A.; Sinaÿ, P. Carbohydr. Res. 1989, 191, 29.

⁽¹⁷⁾ Castro-Palomino, J. C.; Schmidt, R. R. Synlett 1998, 501.

⁽¹⁸⁾ Calculations using both MNDO semiempirical and high-level ab initio methods argued that the glycosyl oxacarbenium ions were likely to be of the lower energy; see: (a) Jones, D. K.; Liotta, D. C. *Tetrahedron Lett.* **1993**, *34*, 7209. (b) Dudley, T. J.; Smoliakova, I. P.; Hoffmann, M. R. J. Org. Chem. **1999**, *64*, 1247. And indeed, experimental results of producing the anomeric isomers have also been reported.^{9a}

^{(19) (}a) Patroni, J. J.; Stick, R. V. Aust. J. Chem. **1987**, 40, 795. (b) Patroni, J. J.; Stick, R. V.; Tilbrook, D. M. G.; Skelton, B. W.; White, A. H. Aust. J. Chem. **1989**, 42, 2127.

^{(20) (}a) Lönn, H. Carbohydr. Res. 1985, 139, 105. (b) Lönn, H. J. Carbohydr. Chem. 1987, 6, 301.

Table 1. Glycosidation with 2,3-O-Thionocarbonate	2,3-O-Thionocarbonate 2
---	-------------------------

entry	acceptor	product	yield (%)
1	BnOH	6	79 ^{<i>a</i>} ; 86 ^{<i>b</i>}
2	C ₆ H ₁₁ OH	7	78 ^a
3	cholesterol	8	72 ^a
4	3	9	56 ^a ; 83 ^c ; 90 ^d
5	4	10	80 ^b
6	5	11	64 ^b

^{*a*} **2**:acceptor = 1:1.5. ^{*b*} **2**:acceptor = 1.2:1. ^{*c*} **2**:acceptor = 1:1.2; 2,6-di*tert*-butyl-4-methylpyridine (1.5 equiv) was added in the reaction. ^{*d*} **2**: acceptor = 1.2:1; 2,6-di-*tert*-butyl-4-methylpyridine (1.5 equiv) was added in the reaction.

to the desired products (6-8) in 72–79% yields. (Entries 1–3) The yields could be reasonably improved (79% \rightarrow 86%, entry 1) by using a little excess amount of the donor (1.2 equiv) in the reaction. For the glycosylation of phenyl 2,3-*O*-isopropylidene-1-thio- α -L-rhamnopyranoside (3), the desired product 9 was isolated in a lower yield (56%). Polar products were observed on TLC, which were conceivably derived from the cleavage of the isopropylidene group and the anomeric phenylthio group. Therefore, a hindered base (2,6-di-*tert*-butyl-4-methylpyridine, 1.5 equiv) was added to scavenge the resulting acid in the reaction. Evidently, the yield for 9 was hence greatly improved (83%, entry 4).

Obviously, the resulting product **9** (as an example) was a versatile intermediate for the further elaboration of complex oligosaccharides containing 2-deoxy- β -glycosidic linkages. As shown in Scheme 2, treatment of **9** with 80% acetic acid (50 °C, overnight) gave in 99% yield the corresponding 2,3-diol, which was then subjected to 1,1'-thiocarbonyldiimidazole in DMF in the presence of an excess amount of

^{*a*} (a) 80% HOAc, 50 °C, overnight, 99%; (b) Im₂C=S, DMAP (2.2 equiv), DMF, 55 °C, 69%; (c) NaOMe (2.0 equiv), HOMe, 60 °C, 3 days, 93%.

4-(dimethylamino)pyridine (DMAP, 2.2 equiv) to afford the phenyl 1-thiodisaccharide 2,3-*O*-thionocarbonate **12**, a new donor, in 69% yield. Alternatively, treatment of **9** with sodium methoxide in methanol (60 °C, 3 days) provided the 3'-OH disaccharide **13**, a new acceptor, in 93% yield.

The successful reaction of disaccharide donor 12 with 3 (eq 3, Scheme 3) and donor 2 with disaccharide acceptor 13

^{*a*} (a) **12** (1.0 equiv), **3** (1.5 equiv), MeOTf (1.5 equiv), 2,6-di*tert*-butyl-4-methylpyridine (1.5 equiv), CH₂Cl₂, 4Å MS, rt, 69% (based on **12**). (b) **2** (2.0 equiv), **13** (1.0 equiv), MeOTf (1.5 equiv), 2,6-di-*tert*-butyl-4-methylpyridine (1.5 equiv), CH₂Cl₂, 4Å MS, rt, 5 h, 75% (based on **13**).

(eq 4) strongly demonstrated the usefulness of the present protocol. The resulting trisaccharides **14** and **15** were obtained in 69% and 75% yields, respectively.²² Analogous transformations from **14** and **15** to synthesize more complex oligosaccharides would by no means be unsuccessful.²³

In conclusion, here we have demonstrated that phenyl 2,3-O-thionocarbonyl-1-thio- α -L-rhamnopyranosides were effective donors for the preparation of the corresponding 3-O-(methylthio)carbonyl-2-S-phenyl-2,6-dideoxy- β -L-glucopyranosides, ready precursors to 2-deoxy- β -glycosides, via 1,2-migration and concurrent glycosidation. Application of this protocol to the synthesis of biologically active 2-deoxy- β -glycoside containing compounds is our current interest and will be reported in due course.

Acknowledgment. We thank the Ministry of Science and Technology of China and the National Natural Science Foundation of China (29925203) for financial support.

Supporting Information Available: Experimental procedures and spectroscopic data for all new compounds (2, 6-15). This material is available free of charge via the Internet at http://pubs.acs.org.

OL006894+

⁽²³⁾ Raney nickel mediated desulfurization of 2-SPh to elaborate the final 2-deoxyglycosides has been shown to be a facile process. 8a,11