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The dark side of dioxygen biochemistry
Joan Selverstone Valentine∗, Diana L Wertz, Thomas J Lyons, Lee-Loung
Liou, Joy J Goto and Edith Butler Gralla

The cellular biochemistry of dioxygen is Janus-faced. The
good side includes numerous enzyme-catalyzed reactions of
dioxygen that occur in respiration and normal metabolism,
while the dark side encompasses deleterious reactions of
species derived from dioxygen that lead to damage of cellular
components. These reactive oxygen species have historically
been perceived almost exclusively as agents of the dark side,
but it has recently become clear that they play beneficial roles
as well.
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Abbreviations
Co Q or Q coenzyme Q, ubiquinone
GPx glutathione peroxidase
GSH reduced glutathione
GSSG oxidized glutathione
HNE 4-hydroxy-2-nonenal
MDA malondialdehyde
NADH reduced nicotinamide adenine dinucleotide
NADPH NADH phosphate
NO nitric oxide
PUFA polyunsaturated fatty acid
ROS reactive oxygen species
SOD superoxide dismutase

Introduction
The chemical biology of dioxygen encompasses a large
variety of reactions, most of them highly beneficial to
the organisms in which they occur, but some of them
deleterious. Several examples of beneficial reactions are
covered in other articles in this issue, for example,
reactions of dioxygen catalyzed by enzymes such as
cytochrome c oxidase or monooxygenase or dioxygenase
enzymes. By contrast, the major emphasis in this review
will be on reactions from the ‘dark side’ of dioxygen
biochemistry, that is, those that cause oxidative damage
in vivo, and on the biological systems that have evolved
to defend against such sources of oxidative stress (see
Figure 1).

Dioxygen, O2, is a powerful oxidizing agent, and the en-
ergy that fuels most nonphotosynthetic biology is obtained
by reducing it to two water molecules in enzyme-catalyzed
reactions. It must be supplied continuously to respiring
cells but does not diffuse fast enough on its own to
supply each cell of multicellular organisms. Consequently,

proteins such as hemoglobin or myoglobin that bind,
transport, store, and release dioxygen have evolved to aid
in its rapid delivery. Dioxygen is also used as a source
of oxygen atoms in a large variety of enzyme-catalyzed
biosynthetic reactions of organic substrate molecules. The
same oxidizing power of dioxygen that is the basis of
respiration, however, also makes dioxygen simultaneously
an agent of toxic oxidative stress [1••].

The dioxygen molecule is unusual in having two unpaired
electrons in its most stable form. Consequently, its direct
reactions with other molecules are generally slow in the ab-
sence of catalysts or radical initiators and are therefore not
the primary causes of oxidative stress. Instead, superoxide,
hydrogen peroxide, organic peroxides, hydroxyl radical,
peroxynitrite, and other energetic molecules derived from
their further reactions appear to be the agents of oxidative
damage. These molecules or ions are collectively termed
‘reactive oxygen species’, or ‘ROS’. Their ultimate source
appears to be mitochondria, where side reactions of
dioxygen with components of the respiratory chain reduce
it to superoxide. Superoxide may itself cause damage (see
below) or may react further to give other ROS.

Antioxidant systems exist in cells to protect against
ROS [1••]. Antioxidants in aqueous compartments, for
example the cytosol and the extracellular fluids, consist
of low molecular weight antioxidants such as glutathione,
ascorbate (vitamin C) [2•] and urate, reductase enzymes
that catalyze the regeneration of the reduced forms of
these antioxidant molecules [3•] and antioxidant enzymes
such as superoxide dismutases (SOD) [4••], catalases and
peroxidases. One class of molecules that is particularly
susceptible to oxidative damage is the polyunsaturated
lipids that are present in membranes of higher organisms.
Unprotected, these molecules are highly susceptible to
free-radical autoxidation reactions (Figure 2) that are a
significant threat to membrane integrity and function.
But the presence of abundant membrane-soluble free
radical chain-breaking antioxidants such as α-tocopherol
(vitamin E) and reduced ubiquinone (coenzyme Q, Co Q
or Q) [5••], along with coupled enzymatic systems that
use reduced nicotinamide adenine dinucleotide phosphate
(NADPH) to keep them reduced, provide excellent
protection against such damage, which only occurs when
these defenses are depleted or overwhelmed.

ROS cause oxidative damage of proteins [6••,7•,8••],
lipids and lipoproteins [9••], nucleic acids [10••,11••],
carbohydrates and other cellular components [6••,10••]
under conditions of oxidative stress, but the exact
chemical identity of the particular damaging agent and
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A schematic overview of some of the pathways leading to oxidative stress and of antioxidants that defend against them in a typical eukaryotic
cell (center; mito, mitochondrion; ER, endoplasmic reticulum). There are four classes of oxidative damage: (a) Site-specific oxidative damage
involving metal-catalyzed generation of hydroxyl radical from hydrogen peroxide which results in strand breaks and base damage in DNA.
(Similar events could occur wherever metal ions bind adventitiously.) (b) Lipid peroxidation which damages membranes as well as producing
toxic products such as MDA (malondialdehyde) and HNE (4-hydroxy-2-nonenal) which react with other cell components. (c) Damage to
proteins resulting from direct oxidations by reactive oxygen species (ROS) or reactions with the products of lipid metabolism (for example,
HNE, MDA). (d) Direct reactions of superoxide itself with certain iron–sulfur cluster prosthetic groups in exposed positions which result in
full or partial disassembly of the cluster, inactivation of the enzyme, and release of iron. (Iron released in this manner may go on to catalyze
more hydroxyl radical generation at specific locations.) (e) A schematic representing the major source of superoxide and hydrogen peroxide
in the cell — leakage of electrons from the electron transport chain. I, III, and IV represent complexes I (NADH dehydrogenase), III (coenzyme
Q : cytochrome c oxidoreductase) and IV (cytochrome oxidase) of the electron transport chain. Q, coenzyme Q; C, cytochrome c. (f) Defensive
molecules are listed according to whether they are present in aqueous or lipid compartments. SOD, superoxide dismutase; GSH, reduced
glutathione.

the mechanism of its action in each case is often difficult
to ascertain. Moreover, some of the products of oxidative
damage to lipids and sugars react readily with proteins and
nucleic acids and thus, when formed, could propagate the
damage from the initial site of oxidative attack [6••].

Until recently, the best characterized of the reactions
involved in biological oxidative damage were those that
appear to be due to attack either of hydroxyl radical, HO.,
or of a metal-bound species with a similarly high degree
of hydrogen atom abstraction reactivity. These ROS
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Figure 2
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Free-radical autoxidation reactions of polyunsaturated lipids leading
to lipid peroxidation. (a) Various reactive oxygen species (ROS),
denoted X., are capable of hydrogen atom abstraction from
polyunsaturated lipids such as linoleic acid. (b) The resulting doubly
allylic radical rearranges to (c), the conjugated monoallylic system,
which reacts readily with dioxygen to form (d), the peroxyl radical
ROO.. (e) Reaction with other polyunsaturated fatty acids (PUFAH)
or with vitamin E (α-tocopherol) transforms the peroxyl radical into (f),
the lipid hydroperoxide ROOH. In some cases (g) the peroxyl radical
reacts with its own conjugated diene system to produce epoxides
and cyclic peroxides. Internal diene–peroxyl radical reactivity often
leads to fragmentation of the polyunsaturated lipid to give HNE,
MDA, and other carbonyl containing compounds. Reproduced with
permission from [86].

are generated in metal-catalyzed reactions of hydrogen
peroxide [12] and are known to be capable of initiating
free radical autoxidation of lipids and damaging protein
and DNA when they are generated in close proximity to
such sites [13••]. Superoxide anion (O2–), the one electron
reduction product of molecular oxygen, is believed to be a
key player in hydroxyl radical generation in vivo because
its dismutation is the primary source of cellular H2O2
and possibly also because it can play the role of reducing
agent for catalytic metal ions in the Fenton reaction.
Superoxide on a chemical level is a rather sluggish
reactant, however, and until recently there has been
little hard evidence for toxicity due to direct reactions

of O2– itself. In the past few years, however, targets
damaged specifically by superoxide have been identified.
Certain iron–sulfur cluster-containing enzymes are known
to be directly inactivated by superoxide in vivo and
in vitro. These include the TCA cycle enzyme aconitase
and dihydroxyacid dehydratase, an enzyme involved
in branched chain amino acid synthesis in Escherichia
coli [14••,15].

As might be expected, increases in oxidative stress
cause cells to synthesize higher levels of antioxidants,
antioxidant enzymes, repair enzymes, and other molecules
that mitigate the effects of such stress. During the
past few years, considerable progress has been made in
characterizing the biochemical mechanisms involved in
signal transduction and regulation of cellular responses
to changes in levels of oxidative stress [16•,17,18]. Of
particular interest in this area are new findings concerning
the link between oxidative stress, mitochondrial function,
and the signaling pathways of apoptosis (a form of
programmed cell death) [19••]. Finally, the evidence
linking oxidative damage to a large number of human
diseases is beginning to accumulate.

Dioxygen biochemistry is a large and active field and we
could not hope to cover all of the important publications
of the past year. Instead we have chosen those that
appear to us to represent major themes of current research
on biological oxidative stress. The articles that we have
identified as being of special interest are those dealing
with areas of research in which we believe a detailed
understanding of the chemistry underlying the biological
phenomena is beginning to emerge.

Production of reactive oxygen species in vivo
Most of the hydrogen peroxide and other ROS generated
during the normal metabolism of a typical eukaryotic
cell is derived from superoxide that is formed from
reduction of dioxygen by components of the mitochondrial
electron transport chain, primarily ubisemiquinone (QH•)
in complex III and secondarily NADH dehydrogenase
(complex I), in what are believed to be side reactions of
electron transport (Figure 1) [20,21]. In addition, however,
there also exist specialized systems whose primary purpose
is to generate superoxide and ROS for use in defense
systems that protect against pathogens. An example is
the NADPH oxidase system found in leukocytes, which
catalyzes the one-electron reduction of dioxygen by
NADPH to form superoxide [22]. An oxidative burst
mechanism utilizing a similar NADPH oxidase system is
also observed in plants [23••].

Reactive oxygen species in regulation and
signaling
Cells respond to changing levels of oxidative stress by
inducing or suppressing the expression of various genes
ranging from those encoding antioxidant systems to those
encoding components of the respiratory chain. Several
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regulatory proteins of this type found in E. coli (for
example, OxyR, SoxR and FNR [16•,17]) have been
particularly well characterized with respect to the chemical
reactions involved. Formation of a disulfide is believed
to occur in OxyR [18] while protein-bound iron–sulfur
clusters undergo redox reactions in SoxR [24••] and
FNR [25••].

ROS have also been shown to function as secondary
messengers in signaling pathways in higher organisms.
Thus a cell may respond to a stimulus that is not due
to changes in oxidative stress by generating ROS that
diffuse to a target, react, and thereby transduce the
signal [26,27••,28,29••].

Numerous recent studies have implicated production of
ROS in the signaling pathways of apoptosis, and it is
intriguing to speculate that the link may occur at the
mitochondria, which are the source of most of the ROS
produced in eukaryotic cells [19••,29••]. Mitochondria
have recently been found to play a central role in apoptosis
[30], by releasing cytochrome c into the cytosol where it
causes activation of the protease caspase-3 as a part of the
apoptotic pathway. In addition, ROS may play a role in
modulating the mitochondrial permeability transition pore
[31], which may be involved in delivery of the apoptotic
signal.

Antioxidant enzymes
Superoxide dismutases (SODs) are antioxidant enzymes
that catalyze the disproportionation of superoxide to give
dioxygen and hydrogen peroxide (Equation 1) [4••,21].

SOD
2O−

2 + H+ → O2 + H2O2
(1)

Peroxidases catalyze the two-electron reduction of hydro-
gen peroxide or organic peroxides to water and alcohol
in addition to oxidized cofactor. For instance, glutathione
peroxidase (GPx), which uses glutathione (GSH) as the
reducing agent (Equation 2), is believed to be a major
cytosolic antioxidant in most eukaryotic cells.

GPx
ROOH + 2GSH → ROH + H2O + GSSG

(2)

Some of the most startling recent findings concerning
antioxidant enzymes are the recent demonstrations that
mice lacking the genes for either CuZnSOD (the cyto-
plasmic SOD containing Cu and Zn in its active site)
[32] or cellular GPx [33] develop relatively normally;
however, fibroblasts from the CuZnSOD-deficient mice
are markedly more sensitive to redox cycling drugs
than the wild type cells [34]. By contrast, yeast lacking
the gene for CuZnSOD grow poorly in air and die
rapidly in stationary phase [35], and both yeast and mice
lacking the genes for the mitochondrial MnSOD have

drastically reduced life spans [35–37]. Recent studies of
transgenic plants with altered levels of small molecule
antioxidants and antioxidant enzymes have also provided
valuable information concerning antioxidant systems in
those organisms [38•,39–41].

The variety of known SODs has expanded in recent
years as has information concerning their properties and
function(s). Two particularly novel types of SODs were
recently identified: nickel-containing SODs isolated from
several strains of Streptomyces [42,43•,44] and a monomeric
CuZnSOD found in the periplasm of E. coli [45•]. As
for function, CuZnSOD was found to protect mammalian
calcineurin from inactivation in vitro [46] and yeast
calcineurin from inactivation in vivo, and it was discovered
that a chaperone for copper was required for proper
insertion of copper into CuZnSOD in yeast [47••]. In
the absence of this protein CuZnSOD is present in an
inactive, copper-free form. Two bacterial genes unrelated
to those known to encode SODs have been shown to
rescue SOD-deficient E. coli strains [48,49].

The development of synthetic and engineered SODs has
continued to advance. Two types of manganese-containing
synthetic SODs, one with porphyrin ligands [50] and the
other with a variety of macrocyclic ligands [51•], were
shown to have activity in vivo. In an elegant example
of protein redesign, Pinto et al. [52••] re-engineered the
protein thioredoxin into an active iron-containing synthetic
SOD enzyme.

A novel antioxidant function has been proposed for
surface-exposed methionine residues that may be oxidized
to methionine sulfoxide, with little effect on the properties
of the protein, and then be re-reduced to the thioether by
methionine sulfoxide reductase [53••,54].

Oxidative damage to biological molecules
Proteins
Chemical studies of radical-mediated protein oxidation
have demonstrated oxidative modification of protein
sidechains, backbone cleavage, and protein–protein dimer-
ization [6••,7•,8••]. Sulfur-containing sidechains are partic-
ularly vulnerable to oxidation at sulfur, but most of the
other oxidative pathways lead to carbonyl-containing prod-
ucts such as aldehydes and ketones, which are commonly
measured using the 2,4-dinitrophenylhydrazine assay for
protein carbonyls [7•] (see lipids and carbohydrates section
below for more discussion of the use of this reagent).

Recent calculations suggest that certain amino acids are
more susceptible than others to irreparable damage, and
that susceptibility depends upon the conformation of the
domain in which they are found. For example, serine
is postulated to be repairable when contained in an
α helix but not when in a β sheet [55••]. A recent
report by Stadtman and co-workers [56] describes an
observed increase in the surface hydrophobicity of proteins
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that occurs with aging, an effect that is attributed to
radical-mediated oxidative reactions.

Perhaps the most dramatic discovery in recent years
concerning mechanisms of oxidative damage in biological
systems is the facile reaction of superoxide with solvent-
exposed iron–sulfur clusters in enzymes such as aconitase
and other hydro-lyase enzymes containing 4Fe–4S clusters
(Figure 3) [14••,15]. The reaction of superoxide with
these centers has been demonstrated to inactivate such
enzymes both in vitro and in vivo and to increase levels of
intracellular free iron, which can catalyze oxidative damage
to DNA [57••] (see below). This mechanism is the first
clear cut example of a direct reaction of superoxide, rather
than of a reactive oxygen species derived from it, leading
to damage of a cellular component in vivo.

Possibly related is the recent observation of activation
of iron regulatory protein-1 (IRP-1, which is identical to
cytosolic aconitase) by hydrogen peroxide [58].

Lipids and carbohydrates
Lipid peroxidation not only threatens the integrity and
function of membranes and membranous proteins but also
produces a variety of toxic aldehydes and ketones, one
of the worst of which, trans-4-hydroxy-2-nonenal (HNE),
is produced in high yield. HNE and malondialdehyde
(MDA), another common toxic product formed upon
peroxidation of lipids, are known to react via a Michael
addition with nucleophilic sidechains of proteins and
can result in protein cross-linking (Figure 4). Oxidative
damage to carbohydrates can also produce products that
are reactive with proteins and can result in damage [6••].

Identification of the primary sites of oxidative damage
in living organisms is a major challenge since antioxidant
protections differ considerably depending on the nature of
the ROS and the site of attack. It is therefore important to
note that products of lipid and/or carbohydrate oxidation
can often react with proteins and that the resulting
adducts contain carbonyl groups and therefore are reactive
with 2,4-dinitrophenylhydrazine in the assay for protein
carbonyls [6••,7•]. Thus detection of high levels of protein
carbonyls does not necessarily indicate that the proteins
themselves are being directly oxidized by ROS; the
carbonyls may instead result from reactions of undamaged
proteins with toxic products of lipid or carbohydrate
oxidation. Methodology to identify the exact nature of
protein carbonyls in biological samples is being developed
to address this issue [59•].

An interesting and different type of biological reaction of
HNE is its reaction as a mechanism-based inhibitor of
cytochrome P450 [60].

Nucleic acids
Elevated levels of oxidative stress have long been known
to result in oxidation of DNA, and recent results suggest

Figure 3
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Hypothetical mechanism for reaction of [Fe4S4]2+ clusters with
superoxide. Individual charges have been assigned to iron atoms in
the figure for convenience in keeping track of redox changes, but
it should be emphasized that electron density in Fe–S clusters is
known to be highly delocalized. (a) Reaction of superoxide with the
solvent-exposed iron center at one corner of the cube produces
a ferric peroxo intermediate, [Fe4S4(O2)]+, and (b) protonation of
the ferric peroxo yields (c) a ferric hydroperoxide, [Fe4S4(OOH)]2+.
Decomposition of the cluster might occur by one of two indicated
pathways: (d) protonation and loss of hydrogen peroxide, forming an
[Fe4S4]3+ cluster which loses Fe2+ to give the [Fe3S4]+ cluster, or
(e) homolytic cleavage of the hydroperoxo ligand to give hydroxyl
radical and a ferryl-containing cluster, [Fe4S4(O)]2+, which could
also give the [Fe3S4]+ cluster upon protonation and loss of Fe3+ and
hydroxide. Adapted from [14••].

that free intracellular iron is involved in this oxidation
[57••,61]. A widely accepted theory is that ‘free’ iron
may bind loosely to various sites in the DNA, where it
can act as a catalyst for the generation, from hydrogen
peroxide, of a very reactive species that reacts with DNA
in the immediate vicinity. Among the species suggested
to attack DNA are hydroxyl radical, an iron ferryl radical
and an iron-bound hydroxyl radical [10••]. The reactions
leading to the reactive species are referred to as ‘Fenton
chemistry’ and are well characterized reactions in vitro,
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Figure 4

PUFA

Oxidant

OH

R
O

H

H

H

Nuc

Nuc

Nuc

OH

OH

O
R

R
N

Protein 1

Protein 1

Protein 1

Protein 2

Protein 2

4-Hydroxy-2-nonenal, (HNE):
PUFA oxidation product

Nuc=ε-amino group of lysine,
imidazole moiety of histidine,
sulfhdryl group of cysteine.

In some cases protein–protein
cross-linking may occur.

H2N

Current Opinion in Chemical Biology

(a)

(b)

(c)

(d)

Reactions of nucleophilic protein sidechains with HNE. (a) The
degradation of polyunsaturated fatty acids (PUFA) often produces
toxic aldehydes and ketones such as HNE. (b) This compound
is detrimental to proteins as a result of its ability to function as a
Michael acceptor for various nucleophilic protein sidechains. The
resulting HNE–protein adduct (c) may have an altered hydrophobicity
as well as an increased carbonyl content, which will cause it to
be reactive with 2,4-dinitrophenylhydrazine in assays for protein
carbonyls. (d) The HNE–protein adduct is capable of reacting further
with the amino groups of other proteins to produce cross-linked
protein–protein adducts. Adapted from [6••].

where a redox active metal ion such as iron or copper,
superoxide and hydrogen peroxide are reactants. In vivo
it is less clear that superoxide is necessary, because its
role in this reaction is that of a reducing agent for the
metal ion, a role that could also be filled by a number of
other biological molecules. Recent results, however, have
led to the proposal that superoxide plays an additional
role in oxidative stress — that of increasing the level of
intracellular ‘free’ iron ions [10••,15], as well as acting as a
reducing agent in the Fenton reaction. It is proposed that
its ability to cause iron release from vulnerable 4Fe–4S
clusters leads to an increased concentration of ‘free’ iron
in the cell.

Increases in cellular iron have recently been reported
to cause iron deposition in the nucleus [57••]. Cellular
reductants such as superoxide, ascorbate and NADH may

then reduce the bound iron to the ferrous state where
Fenton chemistry may then occur in close proximity to
DNA bases and sugars [61]. This type of chemistry is also
possible for copper ions adventitiously bound to DNA; it
has been observed in vitro with NADH as reductant [62•]
and would be expected to result in modified bases and/or
single strand break in the local DNA.

Links between nitric oxide and dioxygen
biochemistry
There is considerable evidence that the physiological
chemistries of nitric oxide (NO) and dioxygen are
intimately related. Recent results in this area that are
particularly notable concern peroxynitrite and nitrosylation
of protein thiols [63•]. Peroxynitrite, ONOO–, is a ROS
formed from reaction of superoxide with NO. It is widely
believed to be an important agent in biological oxidative
damage [64•], although some questions concerning its
physiological relevance have been posed in the past year
[65•,66•]. Recent evidence suggests that the reaction of
peroxynitrite with CO2 to give nitrosoperoxycarbonate,
ONOOCO2–, may play a major role in the physiological
chemistry of peroxynitrite [67•], pointing to the im-
portance of elucidating the lifetime and reactivity of
ONOOCO2– in vivo.

Nitrosylation of thiols has been reported to result in
modification of protein function [68] and to occur in
signal transduction pathways [69••]. The mechanism of
S-nitrosylation in vivo is currently unknown but dioxygen
or ROS probably serves as the oxidant(s) in the generation
of nitrosating species (Equation 3) [70•].

R − S − H + NO + oxidant → R − S − NO + ? (3)

Nitric oxide has also been reported to react with proteins
containing iron–sulfur clusters [71–73].

Reactive oxygen species in disease
There is convincing evidence for the involvement of
oxidative damage in several classes of diseases [8••],
although the identity of the ROS formed, the nature
of the chemical reactions involved in their formation
and subsequent reactions, and the primary targets of
oxidative damage are often not yet identified. In the
case of diseases that lead to neurodegeneration, redox
metal ion involvement has frequently been implicated
[74•,75•,76,77••,78,79,80••,81]. Atherosclerosis [9••] and
diabetes [82] are other diseases in which oxidative damage
has been implicated.

Drug action involving reactive oxygen species
The pharmacological action of many drugs involves ROS.
Interesting examples are isoniazid, a drug used to treat
the pathogen Mycobacterium tuberculosis [83••], and the
antitumor antibiotic agent leinamycin [84]. Photodynamic
therapy is another example of drug action involving a ROS,
in this case, singlet dioxygen, 1O2 [85].
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Conclusions
The past several years have seen significant advances in
our understanding of biochemical pathways responsible
for the oxidative stress and biological damage associated
with various disease states and with living in air. At the
same time, it has become increasingly clear that ROS,
in addition to their role as toxic agents, are also used
in certain signal transduction pathways, drug metabolism,
and in different types of biological defense mechanisms.
It has also become clear that the biochemistry of NO and
O2 is often strongly linked.

Most of the ROS formed in normal eukaryotic cells are
derived from superoxide formed at the mitochondria.
The central role the mitochondria play in cell life and
cell death is undoubtedly intimately linked to dioxygen
biochemistry, but remains incompletely understood to
date. The details (sources, targets, exact chemical iden-
tities, and concentrations of reactive oxygen species) are
subjects of active inquiry. Elucidation of the chemical
mechanisms and pathways associated with oxidative
damage is particularly important given the pivotal role
dioxygen and ROS play in cellular biochemistry.
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