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Zinc in yeast: mechanisms involved in 
homeostasis 

Lisa M. Regalla and Thomas J. Lyons 

Abstract 

The first eukaryotic zinc uptake transporter was discovered in the yeast, Sac-
charomyces cerevisiae. Since then, this organism has been an invaluable tool for 
the discovery of genes involved in zinc homeostasis. Genomic and proteomic 
studies have revealed an abundance of Zn2+-regulated genes and Zn2+-binding pro-
teins. The large number of essential functions of Zn2+ necessitates a complex ho-
meostatic mechanism involving the transport and storage of Zn2+ as well as its al-
location to essential sites. Studies in yeast have elucidated the opposing roles of 
the ZIP and CDF Zn2+ transporter families and uncovered additional transport sys-
tems. The transcription factor, Zap1p, functions as the central Zn2+ sensor by regu-
lating genes involved in Zn2+ uptake and adaptation to Zn2+-deficiency. The inves-
tigation of the role of Zn2+ in the regulation of signaling pathways is becoming a 
primary research direction, and yeast will undoubtedly play a major role in any 
discoveries in this field as well. 

1 Introduction 

Cellular organisms are constrained by an absolute requirement for ionic Zn2+ 
(Vallee and Falchuk 1993). The relatively high bioavailability and useful chemical 
properties of Zn2+ allow its extensive use in three general biochemical capacities. 
Zn2+ is primarily used as a structural component of proteins, serving to stabilize a 
wide variety of architectures. The Lewis acidity of Zn2+ also makes it an excellent 
cofactor for catalysis and many enzymes require Zn2+ for full catalytic potential. 
Finally, Zn2+, like Ca2+, is highly labile and capable of forming transient, yet ro-
bust, associations with proteins (Bertini and Luchinat 1994). It is this property that 
allows zinc to function as a signaling molecule. 

The versatility and abundance of Zn2+ have made it indispensable. As a conse-
quence, cells must maintain optimal levels of cellular Zn2+, regardless of supply, 
via a complex process known as homeostasis (Eide 2003). Under conditions of 
low nutritional Zn2+, cells must ensure that adequate quantities are acquired from 
the environment. This entails the activation of specific transporters that scavenge 
Zn2+ from the surroundings and transport it across the plasma membrane. Fur-
thermore, the various intracellular uses of Zn2+ must be prioritized so that growth 
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can be optimized during periods of limitation. When cells encounter nutritional 
surplus, one general strategy is to exclude excess Zn2+ from the interior of the cell 
by downregulating the plasma membrane transporters. Another strategy involves 
the continuous acquisition of Zn2+ so that it can be stockpiled for leaner times. In 
the latter case, cells require both a means of storing large quantities of zinc in a 
manner that does not upset homeostasis and a controlled way to release these 
stores at the appropriate times. 

A proper understanding of Zn2+ homeostasis requires the identification of all 
the players in the game. It is, therefore, beneficial to study an organism for which 
the most information is known. The yeast, Saccharomyces cerevisiae, has proven 
to be an invaluable model system for this purpose. The genome sequence is com-
plete and decades of research have allowed an in-depth analysis of almost every 
biochemical system. More importantly, the proteins involved in metal metabolism 
are remarkably conserved from S. cerevisiae to humans. This review will summa-
rize what is known about zinc metabolism in S. cerevisiae and the mechanism by 
which homeostasis is sustained. Appropriate consideration will be given to the 
discussion of zinc metabolism in other yeast species. 

2 Zap1p: The zinc sensor 

Any discussion of Zn2+ in S. cerevisiae should begin with Zap1p (Zinc-regulated 
Activator Protein). Zap1p is an 880 amino acid transcription factor that functions 
as the central sensor and regulator of zinc homeostasis (Bird et al. 2003). In re-
sponse to Zn2+-deficiency, Zap1p becomes active and binds to Zinc Response 
Elements (ZREs) in the promoters of genes involved in Zn2+ uptake. The ZRE is 
an 11 base pair palindrome that has the consensus sequence ACCTTNAAGGT. 
Zap1p is comprised of a C-terminal DNA binding domain and two distinct activa-
tion domains (AD1 and AD2) that recruit RNA polymerase II to the promoter 
(Fig. 1). Close homologues of Zap1p are found in fungi alone and only the DNA 
binding domain is fully conserved. [PSI-BLAST and homology searches were per-
formed on the NCBI website (Altschul et al. 1997) or the Saccharomyces Genome 
Database (Christie et al. 2004).] 

2.1 Regulation of Zap1p activity 

Zap1p is constitutively located in the nucleus; therefore, its translocation from the 
cytosol to the nucleus does not seem to be a primary determinant of its transcrip-
tional activity. In addition, there is no evidence to suggest that Zap1p activity is 
regulated by any type of posttranslational modification. The current state of under-
standing is that nuclear localized Zap1p generally binds to ZREs during Zn2+-
deficiency, but not during Zn2+-repletion and that a direct interaction with Zn2+ is 
responsible for this phenomenon (Bird et al. 2000). 
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Fig. 1. Structural characteristics of Zap1p. A. The major structural domains of Zap1p. AD 
= activation domain. Zinc fingers (ZF) are numbered beginning with the most N-terminal 
finger. B. A multiple sequence alignment of ZF8, including fungal Zap1p homologues in 
which all eight zinc fingers are conserved. Shaded boxes show conserved residues. EG, 
Eremothecium gossypii; CG, Candida glabrata; CA, Candida albicans; YL, Yarrowia 
lipolytica; UM, Ustilago maydis; CN, Cryptococcus neoformans; AN, Aspergillus nidulans. 

There are at least three direct mechanisms by which Zn2+ binding affects the ac-
tivity of Zap1p. First, the DNA binding domain is Zn2+-regulated (Bird et al. 
2003). This domain contains five classical TFIIIA-type zinc fingers (ZF3-ZF7 in 
Fig. 1A). Each contains one Zn2+ ion that facilitates domain folding by coordinat-
ing two cysteines and two histidines via their side chain sulfur and nitrogen atoms, 
respectively. Conserved phenylalanine and leucine residues help form the hydro-
phobic core of the fingers. Although not strictly conserved in all species, the un-
equivocal presence of an additional non-canonical zinc finger (ZF8) at the extreme 
C-terminus of Zap1p is elucidated by alignment with other fungal Zap1p homo-
logues (Fig. 1B). ZF4, ZF5, ZF6, and ZF7 are believed to make direct contact with 
bases in the ZRE (Evans-Galea et al. 2003). Enigmatically, the structural integrity 
of these fingers is essential for DNA binding, yet the domain shows decreased 
DNA binding activity at high Zn2+ concentrations. The means by which excess 
Zn2+ decreases the affinity for the ZRE is unknown, however, ZF3 and/or perhaps 
ZF8 may be involved in this process. 

The two other mechanisms of Zap1p regulation involve the repression of acti-
vation domain function by Zn2+ binding. AD1 is a very large region of the protein 
rich in histidine residues. This domain is the least conserved across species and 
almost nothing is known about how Zn2+ affects its activity. The working hy-
pothesis is that Zn2+ binding to histidine residues alters the conformation of the 
domain and abrogates its interaction with RNA polymerase. AD2 contains two 
atypical TFIIIA-like fingers (ZF1 and ZF2) that lack the consensus phenylalanine 
and leucine residues. In vitro, these fingers have a decreased affinity for Zn2+ 



40   Lisa M. Regalla and Thomas J. Lyons 

when compared with fingers from the DNA binding domain, perhaps due to the 
loss of the hydrophobic core residues. At higher Zn2+ concentrations, the folding 
of these fingers is postulated to induce a conformational change that results in de-
creased AD2 activity (Bird et al. 2003). 

It is important to note that, on a few promoters, Zap1p remains active even un-
der Zn2+-replete conditions. Two notable examples are the ZRT2 (Bird et al. 2004) 
and ZPS1 (Lamb et al. 2001) genes that encode a low affinity zinc transporter and 
a metalloprotease-like protein, respectively. Unlike classical Zap1p target genes, 
ZRT2 has high Zap1p-dependent expression in Zn2+-replete cells. This elevated 
expression can be repressed by the addition of excess Zn2+. In the case of ZPS1, 
expression in Zn2+-replete conditions is induced by alkaline pH in a manner that is 
dependent upon both the Zap1p protein and the pH-responsive transcription factor 
Rim101p. Zap1p and Rim101p interact in a yeast two-hybrid screen (Uetz et al. 
2000), suggesting they may collaborate during the regulation of ZPS1. The induc-
tion profiles of ZRT2 and ZPS1 suggest that the inactivation of Zap1p can be pre-
vented or perhaps shifted to higher Zn2+ concentrations by other proteins in the 
nucleus. 

2.2 The Zap1p regulon 

Zap1p was first discovered as a positive regulator of both ZRT1 and ZRT2, the 
genes encoding the high- and low-affinity Zn2+ uptake transporters, respectively 
(Zhao and Eide 1997). Three distinct ZREs can be found in the promoter regions 
of both of these genes. A ZRE was subsequently identified in the promoter of the 
ZAP1 gene as well (Zhao et al. 1998). The autoregulation of ZAP1 by Zap1p 
represents a fourth, indirect mechanism by which Zn2+ regulates the activity of 
Zap1p. 

DNA microarrays were used to identify all Zap1p-target genes in the yeast ge-
nome (Lyons et al. 2000). Global expression changes in response to Zn2+-
depletion were monitored in wild type and zap1∆ cells. This screen yielded over 
forty genes whose expression suggested Zap1p-dependent regulation and whose 
promoter regions contained sequences that resemble the consensus ZRE. There is 
no reason to believe that the Zap1p regulon defined in these experiments is com-
plete. The inherent errors of DNA microarray analysis notwithstanding, many 
yeast genes are constitutively repressed under the conditions used for these ex-
periments (i.e. glucose as a carbon source, aerobic culture, etc.) (Courey and Jia 
2001). It is possible that, if different culture conditions were used, new Zap1p-
target genes would be found. Many of the genes belonging to the Zap1p regulon 
were either known or expected to be Zap1p targets due to their predicted roles in 
Zn2+ metabolism. The majority of Zap1p target genes, however, encode proteins 
not directly involved in Zn2+ metabolism (Lyons et al. 2000). Some of these genes 
will be discussed in later sections. 
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3 Zinc transporters 

The main line of defense against ion loss or overaccumulation are membranes. 
The lipid bilayer presents a formidable barrier to the diffusion of charged mole-
cules. This necessitates the existence of specific transporters that can selectively 
allow the passage of ions in response to environmental conditions. Several major 
families of Zn2+ transporters have been characterized and extensively reviewed. 

3.1 Import into the cytoplasm 

The ZIP (Zrt-like, Irt-like Proteins) family of proteins is ubiquitous in biology, in-
dicating a very early origin. ZIP proteins are responsible for transporting Zn2+ into 
the cytoplasm from either outside of the cell or from various internal organelles. 
The ZIP family is defined by a characteristic topology. Although most members 
have eight transmembrane domains (TM), some have as few as five. TMs 4 and 5 
contain conserved histidines that are predicted to line a channel involved in metal 
binding and transport. Another conserved region of unknown importance is the cy-
toplasmic loop between TM3 and TM4 that contains an (HX)n motif (Fig. 2) (Eide 
2004). 

S. cerevisiae possess five genes encoding ZIP proteins (Fig. 2). Indeed, the 
aforementioned Zrt1p and Zrt2p high- and low-affinity plasma membrane Zn2+ 
transporters are the flagship members of this family. The third ZIP protein, Zrt3p, 
is closely related to the Zn2+ uptake transporter, ZupT, from Escherichia coli 
(Grass et al. 2002). Zrt3p is involved in the liberation of Zn2+ from vacuolar stores 
(Section 6) (MacDiarmid et al. 2000). Of the remaining ZIP proteins, only Atx2p 
has been characterized. Atx2p is thought to reside in the Golgi complex where it 
may function in the transport of Mn2+ from the lumen to the cytoplasm, but its in-
volvement in zinc homeostasis has not been investigated (Lin and Culotta 1996). 
The last ZIP protein, Yil023cp, although completely uncharacterized, is closely re-
lated to the human ZIP4 protein mutated in congenital zinc deficiency (acroderma-
titis enteropathica). 

Interestingly, a strain lacking both Zrt1p and Zrt2p (zrt1∆zrt2∆) is still viable, 
indicating that these transporters are not the sole vehicles for Zn2+ transport from 
outside of the cell. Another protein, Fet4p, was found to function as a low affinity 
Fe2+, Cu2+, and Zn2+ uptake transporter (Waters and Eide 2002). Fet4p has an in-
teresting evolutionary history. It is yeast-specific and no closely related proteins 
can be found in homology searches. More extensive BLAST searches, however, 
revealed that Fet4p is distantly related to a widely dispersed family of bacterial 
proteins (COG5478) that have two transmembrane domains. Fet4p is a fusion pro-
tein made up of four tandem repeats of the COG5478 motif. The most highly con-
served amino acids are two tryptophan residues found within the transmembrane 
domains (Fig. 2). 

Since a zrt1∆zrt2∆fet4∆ triple mutant strain is still viable when grown in high 
Zn2+, other Zn2+ uptake mechanisms must exist (Waters and Eide 2002). The cur-
rent assessment of the  phosphate transporter,  Pho84p, suggests it too functions as 
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Fig. 2 (overleaf). Zinc transporters in Saccharomyces cerevisiae. A. A model of a yeast cell 
with the predicted locations and directionality of Zn2+ transport for known and putative 
transporters. B. Predicted topology and important structural features of the ZIP, Fet4p, and 
CDF proteins. 

a low affinity transporter of Zn2+ and other divalent cations, presumably via metal-
phosphate complexes (Jensen et al. 2003). 

3.2 Export out of the cytoplasm 

It is clear that yeast possess many systems for the transport of Zn2+ into the cyto-
plasm. Once Zn2+ builds up in the cytoplasm, however, it must be trafficked across 
the membranes of various internal organelles to maintain homeostasis. The CDF 
(Cation Diffusion Facilitator) family of proteins assumes this responsibility. Like 
the ZIP family, the CDF proteins are ubiquitous. Their predicted topology gener-
ally consists of proteins with six transmembrane domains, although some CDF 
proteins have twelve. As with the ZIP proteins, a long loop region between TM4 
and TM5 contains an (HX)n motif. The highly amphipathic nature of TM1, TM2, 
TM5, and TM6, along with a preserved intermembrane aspartate residue, suggest 
a cation transporting channel (Fig. 2) (Palmiter and Huang 2004). 

In S. cerevisiae, Zrc1p and Cot1p are the best characterized members of the 
CDF family. Both confer resistance to metals when overexpressed and sensitivity 
when deleted (Kamizono et al. 1989; Conklin et al. 1992; MacDiarmid et al. 
2000). Zrc1p and Cot1p are found on the vacuolar membrane and function to 
transport Zn2+ into this compartment (Section 6) (MacDiarmid et al. 2000). Msc2p 
is believed to transport Zn2+ into the lumen of the endoplasmic reticulum and per-
haps an additional organelle involved in the secretory pathway. Protein folding in 
the ER is impaired in an msc2∆ strain, a phenotype which can be rescued by addi-
tion of excess Zn2+ (Ellis et al. 2004). Msc2p has been shown to physically inter-
act with a fourth CDF protein, Zrg17p. These two proteins function as a complex 
to transport Zn2+ into the secretory pathway (Ellis 2005). The final two members 
of the CDF family in S. cerevisiae, Mmt1p and Mmt2p, are thought to participate 
in the transport of iron into the mitochondrion (Li and Kaplan 1997). No evidence 
to date links them to the metabolism of Zn2+. 

Mrs3p and Mrs4p comprise another pair of homologous proteins, unrelated to 
the CDF family, that are thought to transport iron into the mitochondrion. Two 
lines of evidence suggest these two proteins also play a role in mitochondrial Zn2+ 
uptake. First, MRS3 expression seems to be regulated by Zap1p, either directly or 
indirectly (Lyons et al. 2000). Second, mitochondrial Zn2+ concentrations in iron-
deficient yeast are highest in strains overexpressing Mrs3p or Mrs4p and lowest in 
strains that lack these transporters (Muhlenhoff et al. 2003). 
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3.3 Zinc regulation of transporter function 

Due to their role in scavenging extracellular or stored Zn2+, it is not surprising that 
the primary transcriptional regulator of ZRT1, ZRT2, ZRT3, and FET4 is Zap1p 
(Lyons et al. 2000). The ZRT2 gene, however, presents an interesting case. Not 
only does ZRT2 retain elevated expression in high Zn2+ (Section 2.1), at very low 
Zn2+ concentrations, its expression is repressed by Zap1p. This phenomenon is due 
to the binding of Zap1p to a weak ZRE adjacent to the TATA box, thereby, pre-
venting the recruitment of RNA polymerase. These findings reflect the function of 
Zrt2p as a low affinity transporter. Since Zrt2p does not function at extremely low 
Zn2+ concentrations, its expression is not needed. During Zn2+-repletion, it may 
play a role in constitutive zinc uptake (Bird et al. 2004). 

In mammalian cells, excess Zn2+ is sensed by the MTF-1 transcription factor 
that induces the expression of proteins which expel Zn2+ from the cytoplasm 
(Andrews 2001). This mechanism is absent in S. cerevisiae. The only CDF gene 
induced by Zn2+-excess is COT1 and this effect is not direct (Section 7) (Lyons et 
al. 2004). On the contrary, ZRC1 and ZRG17 are induced by Zn2+-deficiency via 
Zap1p (Lyons et al. 2000). It is possible that essential proteins in the vacuole and 
ER require Zn2+ for function and the upregulation of ZRC1 and ZRG17 indicates 
an increased need for Zn2+ transport to these sites. While this may be the case for 
ZRG17, the induction of ZRC1 during Zn2+-deficiency is more complex and will 
be discussed in Section 6. 

The shift from a nutrient-limiting to nutrient-replete environment is problematic 
because many nutrients are toxic at high concentrations. Zn2+ is no exception 
(Dineley et al. 2003). Transcriptional changes are unlikely to occur quickly 
enough for cells to adapt to rapid environmental changes. Therefore, yeast respond 
to these extreme changes via posttranslational control of Zn2+ transporters, particu-
larly Zrt1p. Under conditions of Zn2+ limitation, Zrt1p is a stable protein. Upon 
exposure to high levels of Zn2+, Zrt1p is internalized via ubiquitin-dependent en-
docytosis. Although, the exact trigger for ubiquitination is poorly understood, the 
modification is known to occur on lysine 195. After endocytosis, Zrt1p traffics to 
the vacuole where it is degraded, thereby preventing additional Zn2+ uptake (Gitan 
et al. 1998, 2003). To date, this is the only known posttranslational regulatory 
mechanism of Zn2+ transporters in yeast. 

4 The zinc proteome 

To gain a complete understanding of zinc homeostasis in yeast, one must first 
identify all of the genes and gene products involved in the process. Several papers 
have attempted to define the "zinc proteome" in both E. coli and yeast using 2D 
gel electrophoresis and mass spectrometry (Obata et al. 1996; Zhu et al. 2002). 
Many new Zn2+-containing proteins have since been identified. There is also a 
wealth of genomic data that can be mined to identify putative Zn2+ proteins using 
known Zn2+-binding motifs. 
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4.1 Structural zinc 

Since the characterization of the classical TFIIIA-type zinc finger motif, a plethora 
of distinct structural Zn2+-binding motifs have been discovered and characterized 
by x-ray crystallographic and nuclear magnetic resonance techniques. In general, 
structural Zn2+ sites have only four tetrahedrally coordinated protein side chain at-
oms. With rare exceptions, these coordinating atoms are cysteine sulfurs and his-
tidine nitrogens. The most common ligand sets are four cysteines (C4), three cys-
teines and one histidine (C3H) and two cysteines and two histidines (C2H2). The 
characteristics of zinc finger and related domains have been extensively reviewed 
elsewhere (Grishin 2001; Laity et al. 2001; Matthews and Sunde 2002; Krishna et 
al. 2003). 

The entire yeast proteome can be scanned for proteins that contain known Zn2+ 
binding motifs. A summary of such a search, including Zn2+-binding proteins dis-
covered by other means, is shown in Table 1. Proteins are listed by structural mo-
tif or functional classification. As can be seen, there are hundreds of proteins with 
known Zn2+-binding motifs. Due to the prevalence of CxxC motifs (where x = any 
amino acid) in structural Zn2+ sites, proteins that have closely spaced CxxC pairs 
(leading to a C4 ligand set) are also predicted to bind Zn2+. If these putative Zn2+-
binding proteins were added to Table 1, they would place the number of proteins 
that require structural Zn2+ at approximately four hundred. Since glutamate and 
aspartate can occasionally replace cysteines and histidines in Zn2+-binding motifs, 
it is likely that the proteome search performed for this review missed many bona 
fide Zn2+-binding proteins. Moreover, novel Zn2+-binding motifs are being discov-
ered at a regular pace and it is likely that Table 1 is far from complete. Approxi-
mately 6-7% of the yeast proteome (depending on varying estimates for its size) 
require zinc for structural integrity. Based on this fact, zinc can be thought of as an 
essential building block for proteins. 

4.2 Catalytic zinc 

Several excellent reviews have considered the role of Zn2+ as a catalytic cofactor 
(Coleman 1992, 1998; Parkin 2004). While hundreds of enzymes are known to 
utilize Zn2+, most can be categorized into two basic groups, both of which use the 
positive charge of zinc to stabilize negative charges on substrates. The first class 
of enzymes uses Zn2+ to coordinate the oxygen or sulfur atoms in water molecules, 
alcohols or thiols. Coordination to Zn2+ polarizes the O-H or S-H bond, making 
the proton more acidic and allowing its abstraction by a basic amino acid side 
chain. The hydroxide, alkoxide or thiolate generated can then act as a nucleophile 
in catalysis. The second class of enzymes utilizes Zn2+ as an electron-withdrawing 
group to polarize carbonyls. This makes the carbon atom more electrophilic, 
thereby, stabilizing enolates or making carbonyls more amenable to nucleophilic 
attack. Still other enzymes, such as α-1,2-mannosidase, are thought to use zinc for 
substrate recognition (van den Elsen et al. 2001). Table 2 lists all of the proteins in 
yeast that are known or suspected to contain tightly bound catalytic Zn2+. 
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Table 1. Compendium of yeast proteins with structural zinc sites 

Structural Class/Function Proteins 
Single zinc binding domains 

Classical TFIIIA tandem 
   zinc fingers (C2H2) 

Ace2, Adr1, Azf1, Crz1, Fzf1, Gis1, Lpz12, Lpz14, 
Nrg1, Nrg2, Map1, Met31, Met32, Mig1, Mig2, Mig3, 
Mot3, Msn2, Msn4, Mub1, Pzf1, Rgm1, Rim101, 
Rme1, Rph1, Rpn4, Set5, Sfp1, Stp1, Stp2, Stp3, Stp4, 
Swi5, Usv1, Zap1, Zms1, Yer130c, Ygr067c, 
Yml081c, Ypr022c 

U1-like zinc fingers (C2H2) Bud20, Dbf4, Jjj1, Luc7, Prp9, Prp6, Prp11, Reh1, 
Rei1, Rts2, Sad1, Snu23, Spt10, Yhc1, Yod1, Ydr049w 

TFIIIA-like (C2H2) Abf1, Eco1, Luc7, Pcf11, Sas2, Sas3 
GATA-type zinc finger (C4) Ash1, Dal80, Gat1, Gat2, Gat3, Gat4, Gln3, Gzf3, 

Rad16, Srd1, Srd2 
ACE1 structural zinc (C3H) Ace1, Haa1, Mac1 
Viral-type zinc knuckle 
(C2HC) 

Air1, Air2, Atg14, Bik1, Gis2, Itt1, Mpe1, Msl5, Slu7, 
Ykr017c, Yol029c 

TIS11 RNA binding finger 
(C3H) 

Cth1, Dus3, Lee1, Nab2, Tis11, Yth1, Yor091w 

Rad50 zinc hook (C4) Rad50 
PKC1-like fold/ARF GAP 
(C4) 

Age1, Age2, Gcs1, Glo3, Gts1, Sps18 

MOB1 four helix bundle 
(C2H2) 

Mob1 

NEW1/DHHC (predicted) Akr1, Akr2, Erf2, Swf1, Ydr459c, Ynl155w, Ynl326c, 
Yol003c 

Class II histone deacety-
lase(C4) 

Hst1, Hst2, Hst3, Hst4, Sir2 

DnaJ/CSL zinc finger (C4) Apj1, Dph3, Hua1, Jjj1, Mdj1, Nob1, Scj1, Xdj1, Ydj1 
Ubiquitin interacting zinc 
fingers 

 

 HIT znf-UBP (C4) Bcd1, Hit1, Plb1, Plb2, Plb3, Spo1, Ubp8, Ubp14, 
Vps71, Yhl010c 

 RBZ/NFZ (C4) Npl4, Nrp1, Ubp14, Vps36 
 E1 protein zinc finger 

(C4) 
Atg7, Uba2, Uba3, Uba4 

 Deubiquitinase finger(C4) Ubp1, Ubp4, Ubp7, Ubp8, Ubp9, Ubp10, Ubp11, 
Ubp13, Ubp14, Ubp16 

Sec23/24 zinc finger (C4) Sec23, Sec24, Sfb2, Sfb3, Yhr035w 
ZPR1 finger Zpr1 
tRNA binding proteins (C4) Ism1p, Mes1p, Nam2p, Trm1 
DNA replication machinery 
(C4) 

Mcm2, Mcm6, Mcm7, Mcm10, Pol1, Pol2, Pol3, 
Rev3, Rfa1 

RNA polymerase complex 
   (at least 8 zinc/complex) 

Brf1, Dst1, Rpa9, Rpa135, Rpa190, Rpb1, Rpb2, 
Rpb3, Rpb9, Rpb10, Rpc2, Rpc10, Rpc11, Rpo31, 
Spt4, Sua7, Tfa1, Tfb4 

Ribosome associated pro-
teins 

Mrpl32, Rps26, Rps27, Rps29, Rpl34, Rpl37, Rpl43, 
Tif5, Sui3 

TIM22 complex Tim8, Tim9, Tim10, Tim12, Tim13 
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Multinuclear zinc binding domains 
PKC1 Pkc1 
FYVE Fab1, Pep7, Pib1, Pib2, Vps27 
ZZ domain Ada2, Rsc8 
RING finger and related 
motifs 

Asr1, Apc11, Asi1, Asi3, Asr1, Bre1, Cst9, Cwc24, 
Dma1, Dma2, Far1, Hex3, Hrd1, Hrt1, Hul4, Itt1, 
Mag2, Nfi1, Pep3, Pep5, Pex2, Pex10, Pex12, Pib1, 
Psh1, Rad5, Rad16, Rad18, Ris1, San1, Sig1, Siz1, 
Slx1, Slx8, Ssm4, Ste5, Tfb3, Tul1, Ubr1, Ubr2, Vps8, 
Ybr062c, Ydr128w, Ydr266c, Yhl010c, Ykr017c, 
Ylr247c, Ymr187c, Ymr247c, Yol138c 

PHD Asr1, Bye1, Cti6, Ecm5, Hop1, Ioc2, Nse1, Nto1, 
Pho23, Rco1, Rds3, Set2, Set3, Set4, Snt2, Spp1, 
Yng1, Yng2, Yer051w, Yjr119c 

LIM domain/RHO GAP Lrg1, Pxl1, Rga1, Rga2 
Binuclear zinc clusters 
(Zn2Cys6) 

Arg80, Aro81, Cat8, Cep3, Cha4, Dal81, Ecm22, 
Eds1, Gal4, Hal9, Hap1, Leu3, Lys14, 
Mal13/2/23/33/83, Oaf1, Pdr1, Pdr3, Pdr8, Pip2, Ppr1, 
Put3, Rdr1, Rds1, Rds2, Rgt1, Rsc3, Rsc30, Sef1, 
Sip4, Stb4, Stb5, Sut1, Sut2, Tbs1, Tea1, Thi2, Uga3, 
Ume6, Upc2, War1, Yrm1, Yrr1, Ybr239c, Ydr520c, 
Yer184c, Yfl052w, Yil130w, Yjl103c, Yjl206c, 
Ykl222c, Ykr064w, Yll054c, Ylr278c, Ynr063w 

Multinuclear metalloenzymes with known and potential structural zinc sites 
PPP family phosphatases Cmp2, Cna1, Glc7, Ppg1, Pph3, Pph21, Pph22, Ppq1, 

Ppt1, Ppz1, Ppz2, Sit4 
Pseudouridine synthase Deg1, Pus1, Pus2 
Alcohol dehydrogenases Adh1, Adh2, Adh3, Adh5, Adh6, Adh7, Bdh1, Sfa1, 

Yalo61w 
Miscellaneous Car1, Cox4, Sod1 
 
Many more enzymes can be activated by Zn2+ in vitro, however, the functional 

cation in vivo is not known. Such enzymes, known as Zn2+-activated enzymes, 
may be far more numerous than is currently recognized. One example of this type 
of enzyme is enolase, which is highly active in the presence of Zn2+ in vitro. The 
pI of enolase has been shown to change when cells are grown under Zn2+-deficient 
conditions, suggesting that Zn2+ is the functional cofactor in vivo as well. Based 
on Table 2, it is estimated that at least 100 enzymes, or 1-2% of the yeast pro-
teome, require or can utilize Zn2+ for catalysis. 

5 Prioritizing zinc 

Estimates for the concentration of Zn2+ inside eukaryotic cells are remarkably 
consistent from species to species. In yeast, this value is approximately 180 µM 
(Lyons and Eide, unpublished data). Back-of-the-envelope calculations based on 
several different studies suggest  that a yeast  cell  grown  in normal  media  (Zn2+- 
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Table 2. Compendium of yeast proteins that use zinc in a catalytic capacity 

Functional Class Proteins 
Nucleophile stabilization by  
-X-H bond polarization  

Zn2+ +  X-H  
------>  Zn2+-X- + H+ 

Alcohol dehydrogenases (R-O-H) Adh1, Adh2, Adh3, Adh5, 
Adh6, Adh7, Bdh1, Sfa1, Sor1, 
Sor2, Xyl2, Yal061w 

Prokaryotic-type carbonic anhydrase (H-O-H) Nce103 
Hydrolases (H-O-H) 

 AlkP (alkaline phosphatase) superfamily:  bi-
nuclear metallohydrolase 

Gpi13, Las21, Mcd4, Pho8, 
Ycr026c, Yel016c 

 Type I cyclic nucleotide phosphodiesterase Pde2 
 Trinuclear zinc phosphodiesterase Apn1 
 HIT family diadenosine polyphosphatase hy-

drolases 
Apa1, Apa2, Hnt1, Hnt2 

 β-lactamase fold: binuclear zinc site 
 Phosphodiesterases Pde1, Pso2, Trz1, Ysh1 
 Glyoxalases I and II Glo2, Glo4 
 Class I histone deacetylases Hda1, Hos1, Hos2, Hos3, Rpd3 
 Cytosine deaminase fold 
 Nucleic acid/riboflavin deaminase Amd1, Cdd1, Dcd1, Fcy1, 

Gud1, Rib2, Tad1, Tad2, Tad3 
 Cyclic imidohy-

drolases/dihydropyrimidase family 
Dal1, Ura4, Yjl213w 

 Jab1/MPN proteasomal metalloprotease Ron8, Rpn11, Rri1  
 MH clan binuclear zinc metalloproteases 

   (HxDxnDxnEExnDxnH) 
Ape3, Cps1, Lap4, Vps70, 
Ybr074w, Ybr281c, Ydr415c, 
Yfr044c, Yhr113w, Yol153c 

 MA clan zinc metalloproteases (HExxHxnE) Aap1, Afg3, Ape2, Lta1, Oct1, 
Prd1, Rca1, Yme1, Zps1, 
Yil137c, Ynr020c 

 MC clan metalloprotease (HxxExnHxnE) Ecm14 
 ME clan metalloprotease (HxxEHxnExnE) Axl1, Cym1, Mas1, Mas2, 

Ste23, Yol098c 
 MG clan binuclear metalloprotease 

(DxnDxnHxnExnE) 
Map1, Map2 

 Integral membrane proteases (HExxH) Oma1, Ste24 
Thiol Activation (R-S-H)  

 Methionine synthases Met6, Mht1, Sam4 
 Prenyltransferases Bet4, Ram2 
 Methionine sulfoxide reductase (potential) MsrB 
 Disulfide isomerases (potential) Eug1, Mpd1, Mpd2, Pdi1 

Electrophile stabilization by  
R=O bond polarization 

Zn2+ + O=C-R  
------>  Zn2+-∂-O-C∂+-R 

Alcohol dehydrogenase (reverse rxn, carbonyl 
activation) 

See above 

Aldol cleavage/condensation (enolate stabilization) 
 Type II aldolase Fba1 
 DAHP synthase Aro3, Aro4 
 5-aminolevulinate dehydratase/PBGS Hem2 
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 HMGL fold 
 Homocitrate synthase Lys20, Lys21 
 Isopropylmalate synthase Leu4, Yor108w 
 Pyruvate carboxylase Pyc1, Pyc2 
Phosphomannose isomerase (enediolate stabili-
zation) 

Pmi40 

Substrate recognition  
Alpha-1,2-mannosidase Ams1 

 
replete) contains roughly 6-8 million Zn2+ atoms (Korhola and Edelmann 1986; 
Obata et al. 1996; Lyons and Eide, unpublished data). When grown in normal me-
dia, however, yeast stop growing due to glucose-depletion before Zn2+ becomes 
limiting. Therefore, much of the Zn2+ content may result from the continuous up-
take and storage of Zn2+ by cells that have entered stationary phase. In support of 
this hypothesis, the Zn2+ content in yeast significantly drops when Zn2+ is the lim-
iting nutrient. Under these conditions, estimates for intracellular Zn2+ range from 
600,000 to 3 million atoms per cell (Obata et al. 1996; Lyons and Eide, unpub-
lished data). This value, albeit crude, can be thought of as the minimum cellular 
Zn2+ requirement for cells that have undergone growth arrest due to lack of Zn2+. 

Although Zn2+ is clearly abundant inside of cells, Table 1 and 2 show that the 
proteins requiring this metal for proper function are as well. It is therefore impor-
tant for yeast to prioritize the uses of Zn2+ so the most important functions are re-
tained during Zn2+-limitation. To complicate matters, most intracellular Zn2+ 
seems to be tightly bound to a variety of intracellular ligands. 'Free Zn2+', or the 
amount of Zn2+ that remains unchelated inside of a cell is predicted to be quite low 
(Finney and O'Halloran 2003). Work done in E. coli estimates the amount of 'free 
Zn2+' to be less than one atom per cell (Outten and O'Halloran 2001). 

How then does the cell distribute the infinitesimal amount of 'free Zn2+' to the 
appropriate sites? The answer may lie in the lability of Zn2+. The relatively fast 
ligand exchange rate of Zn2+ makes it likely to associate and dissociate quickly 
from solvent accessible sites. Thus, when an ample supply exists, Zn2+ may dif-
fuse rapidly throughout the cell without ever being 'free' for very long. Small 
molecules such as glutathione may also mediate the fast exchange of Zn2+ from 
site to site (Mason et al. 2004). 

As Zn2+ is depleted from the cytoplasm, those sites with the lowest binding af-
finity or that exchange the fastest are likely to lose Zn2+ more rapidly. It is possi-
ble that natural selection has tuned the Kd and solvent accessibility of the numer-
ous Zn2+-binding sites so that the dispensable functions of Zn2+ are lost first. Since 
structural Zn2+ sites have generally high Zn2+-binding affinities (Cox and 
McLendon 2000) and low solvent accessibilities (Auld 2001), they are probably 
the last to lose Zn2+. The fact that the DNA binding zinc fingers of Zap1p retain 
their function even when cells have stopped growing due to Zn2+-limitation sup-
ports this conclusion (Lyons et al. 2000). The likelihood is minimal that cells 
would continue to grow if Zn2+-deficiency had advanced to the point of depleting 
structural Zn2+ sites. 
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5.1 Zinc chaperones 

Another possibility for the distribution of Zn2+ involves the existence of specific 
proteins that escort Zn2+ to essential sites, regardless of their physical properties. 
In the case of copper homeostasis, proteins known as copper chaperones are re-
sponsible for directional transcytoplasmic trafficking. For example, the yeast cop-
per chaperone, Ccs1p, is specifically required for the delivery of copper to super-
oxide dismutase (Elam et al. 2002). 

It is important to note that, with the exception of Atx1p, which delivers copper 
to the entire secretory pathway, all known copper chaperones have specific copper 
protein targets. This is not surprising since the copper proteome is quite small, 
consisting of no more than a handful of proteins. It is not a burden for cells to 
carry genes for both the copper protein and the accessory copper chaperone. On 
the other hand, the enormity of the zinc proteome makes it unlikely that each zinc 
protein possesses a cognate zinc chaperone. Although, it is possible that classes of 
zinc proteins, such as the Zn2+-dependent alcohol dehydrogenases, may have 
chaperones that serve all the members of the class. To date, however, no zinc 
chaperone has been identified in eukaryotes. 

5.2 Remodeling 

The yeast cell is a complex mixture of proteins competing for limited supplies of 
Zn2+. In the absence of zinc chaperones or some other type of active partitioning, 
kinetics and thermodynamics determine the fate of Zn2+ as nutritional supplies 
dwindle. Therefore, it may become necessary for the cell to remodel the cellular 
protein profile to ensure the reallocation of Zn2+ to essential sites. If a Zn2+-
containing protein is abundant and dispensable, cells may downregulate its ex-
pression in response to Zn2+-deficiency, thus, releasing much needed Zn2+ for 
other, more important, uses. 

An example of this phenomenon can be seen with the major isoform of Zn2+-
containing alcohol dehydrogenase (Adh1p). Based on crude estimates of approxi-
mately 250,000 monomers per cell, Adh1p can be considered to be very abundant 
in yeast cells (Racker 1950). Since each monomer contains two Zn2+ ions, Adh1p 
would consume an enormous percentage of the cellular supply if expressed under 
conditions of Zn2+-limitation. Part of this problem is solved by thermodynamics, 
since Adh1p purified from Zn2+-limited yeast is both less active and Zn2+-deficient 
(Dickenson and Dickinson 1976). Clearly, Adh1p is unable to compete with the 
myriad of other Zn2+-chelators. Yeast also address this problem by placing the ex-
pression of the iron-dependent alcohol dehydrogenase isozyme, Adh4p, under the 
control of Zap1p, thereby, eliminating the need for Zn2+ to perform the dehydro-
genase function (Lyons et al. 2000). Lastly, it appears that Zap1p, either directly 
or indirectly, represses the expression of the ADH1 gene (Lyons et al. 2000). This 
remodeling allows yeast to conserve important Zn2+-dependent functions at the 
expense of Adh1p activity. 
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Other potential examples of this type of remodeling have recently come to 
light. In E. coli and B. subtilis, several non-Zn2+-dependent ribosomal proteins are 
specifically induced by Zn2+-deficiency, ostensibly to replace Zn2+-binding sub-
units that can no longer function due to loss of Zn2+ (Panina et al. 2003; Nanamiya 
et al. 2004). An alternative interpretation is that the replacement of ribosomal pro-
teins that require Zn2+ with ones that do not is a matter of economy. Ribosomes 
are numerous. Ergo, ribosomes that require less Zn2+ are beneficial during Zn2+-
deficiency because they consume less of a limiting resource. 

In yeast, a similar situation may exist. Yeast ribosomes are predicted to contain 
at least six proteins with predicted structural Zn2+-binding sites (Rivlin et al. 
1999). Since a vegetative yeast cell is estimated to contain 200,000 ribosomes 
(Warner 1999), they probably represent the largest pool of Zn2+ in the cytoplasm. 
Zn2+-deficient yeast show repressed expression of over a hundred genes encoding 
ribosomal proteins. This is not surprising since the repression of ribosomal genes 
in yeast seems to be a generalized response to stress. Unexpectedly, ribosomal 
genes showed lower expression in wild type cells than in zap1∆ cells when both 
were grown under Zn2+-deficiency, suggesting a role for Zap1p in the repression 
of ribosomal gene expression (Lyons et al. 2000). 

6 Zinc storage and detoxification 

Part of homeostasis is the evolution of mechanisms by which excess nutrients are 
managed. If accumulated in the wrong location, Zn2+ is an effective cellular poi-
son. Although the exact mechanism(s) by which Zn2+ exerts its toxic effect(s) are 
not known, Zn2+ may replace other cations in non-Zn2+-dependent enzymes, 
thereby inactivating them. For example, Zn2+ is known to compete with iron for 
insertion into porphyrin by ferrochelatase (Labbe et al. 1999). Zn2+ is also capable 
of acting as an inhibitor by binding to adventitious sites on enzymes, a mechanism 
believed to explain its inhibition of mitochondrial function (Link and von Jagow 
1995). Whatever the mechanism of toxicity, Zn2+ cannot be allowed to hyper-
accumulate in the cytoplasm. 

6.1 The vacuole 

With respect to zinc metabolism, the primary function of the yeast vacuole is stor-
age and detoxification. When Zn2+ is plentiful, Zrc1p transports Zn2+ from the cy-
toplasm into the vacuolar compartment. Transport is thought to proceed via sec-
ondary active transport driven by the proton gradient (MacDiarmid et al. 2002). 
Zn2+ may also traffic to the vacuole by other indirect pathways, perhaps from the 
ER or Golgi via secretory vesicles or from the plasma membrane via endosomes. 
Yeast grown in excess zinc are capable of accumulating large quantities of vacuo-
lar Zn2+, over 80 million atoms/cell (Obata et al. 1996). The speciation of stored 
Zn2+ inside the vacuole is unknown, although it is predicted to form a complex 
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with polyphosphate. When external supplies diminish, these stores are released 
primarily by Zrt3p (MacDiarmid et al. 2000). 

Although its sole purpose is Zn2+ detoxification, Zrc1p is highly expressed in 
Zn2+-limited cells via Zap1p. On the surface, it makes little sense why a protein 
involved in Zn2+-detoxification would be turned on by low Zn2+-bioavailability. 
The answer to this mystery lies in the cell’s inherent proactive defense against 
zinc shock, a condition brought about by the induction of Zrt1p during Zn2+-
deficiency. If cells expressing Zrt1p are exposed to large quantities of extracellular 
Zn2+, Zrt1p is endocytosed and inactivated. However, the endocytic process is not 
fast enough to prevent the rapid influx and temporary cytoplasmic accumulation 
of Zn2+. Therefore, Zrc1p is induced as a preventative measure, thus, allowing the 
vacuole to absorb the excess Zn2+ before it can exert its toxic effects in the cyto-
plasm. zrc1∆ cells are exceptionally sensitive to a shift from Zn2+-depleted condi-
tions to media containing even small amounts of Zn2+. This phenotype can be res-
cued by the concomitant deletion of the ZRT1 gene (MacDiarmid et al. 2003). 

6.2 Metallothionein 

Many organisms express small cysteine-rich proteins, called metallothioneins, that 
function as cytoplasmic stores for Zn2+. Mammalian metallothioneins are induced 
by the MTF-1 transcription factor in response to elevated Zn2+ (Andrews 2001). 
Similar systems can be found in lower eukaryotes and cyanobacteria (Robinson et 
al. 2001). Saccharomyces cerevisiae does have genes encoding metallothioneins, 
however, their gene products are involved in the detoxification of copper and are 
not Zn2+-regulated (Pena et al. 1998). The fact that S. cerevisiae has co-opted met-
allothionein function for copper homeostasis may reflect its unique evolutionary 
history resulting from domestication. The distantly related fission yeast, 
Schizosaccharomyces pombe, does have a Zn2+-inducible system of metal toler-
ance that includes a Zn2+-binding metallothionein, Zym1 (Borrelly et al. 2002). 
Taking this into account, S. pombe may represent a much better model system for 
understanding eukaryotic zinc homeostasis than S. cerevisiae. 

7 Zinc signals and other regulators of zinc homeostasis 

There exists the possibility that Zn2+ is not the only direct regulator of Zap1p, as is 
demonstrated by the influence of Rim101p in Zn2+-replete conditions (Lamb et al. 
2001). In addition, Zap1p is not the only transcription factor that regulates the ex-
pression of Zn2+ transporters. For example, ZRT1 is also regulated by the cell cy-
cle (Cho et al. 1998), nitrogen metabolism (Cox et al. 1999) and the Rpd3p his-
tone deacetylase (Bernstein et al. 2000). It is exciting to speculate that the 
regulation of proteins and genes involved in zinc metabolism by other biochemical 
systems points toward a larger role for Zn2+ as a signaling molecule. 
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The prospect that Zn2+, like Ca2+, acts as a second messenger has intrigued re-
searchers in the field for quite some time. Like Ca2+, Zn2+ is highly labile, redox 
inert and fairly promiscuous regarding the ligand sets and geometries it will accept 
(Vallee and Falchuk 1993; Bertini and Luchinat 1994). These properties allow 
Zn2+ to transmit signals inside cells either by modulating the activity of Zn2+-
activated proteins or by binding to structural Zn2+ sites. Indeed, Zn2+ has many 
pharmacological effects in eukaryotic cells, including the ability to alter signaling 
pathways (Korichneva et al. 2002; Min et al. 2003). 

Some mammalian tissues accumulate high levels of Zn2+ in secretory vesicles 
(Palmiter et al. 1996). Ample evidence suggests that, in some cases, this pool of 
Zn2+ functions in signaling (Cuajungco and Lees 1997). Localization of Zn2+ with 
fluorescent dyes has also indicated the existence of distinct vesicular compart-
ments, called 'zincosomes', filled with 'labile Zn2+' (Beyersmann and Haase 2001). 
It remains to be seen whether or not these zincosomes are real and function in zinc 
homeostasis or are merely artifactual. Zincosomes that transiently accumulate 
Zn2+ in response to influx have been visualized in yeast (Devirgiliis et al. 2004). 
Since this pool of Zn2+ is considered 'labile', it is tempting to postulate a role in 
zinc signals, although this hypothesis remains to be tested. 

Whether or not Zn2+ acts as a direct messenger, it is clear that the expression of 
hundreds of genes show altered expression in response to perturbations in zinc 
homeostasis. Zn2+-deficiency, in particular, has a profound effect on transcription 
(Lyons et al. 2000). The majority of transcriptional alterations caused by defi-
ciency are part of a generalized environmental stress response. Other changes, 
such as the induction of the Unfolded Protein Response, are specifically caused by 
the loss of Zn2+ in critical sites (Ellis et al. 2004). The putative Zap1p regulon, 
however, includes a variety of proteins that have no apparent role in zinc homeo-
stasis. NRG2, for example, encodes a transcriptional repressor involved in the 
regulation of glucose metabolism. DPP1 encodes diacylglycerol pyrophosphate 
(DAGPP) phosphatase, an enzyme involved in the generation of lipid molecules 
that may act as second messengers (Han et al. 2001). 

By comparison, the perturbation of zinc homeostasis by excess Zn2+ has far 
fewer transcriptional consequences (Lyons et al. 2004). DNA microarrays re-
vealed that Zn2+-toxicity resulted in the induction of only two interconnected tran-
scriptional regulons: the Aft1p iron-responsive regulon and the Mga2p hypoxia-
responsive regulon. The CDF protein, Cot1p, is slightly induced under these con-
ditions as part of the Aft1p regulon. It is likely that Zn2+ affects mitochondrial iron 
metabolism which, in turn, affects the hypoxia regulon. 

8 Conclusions 

Saccharomyces cerevisiae affords the unique opportunity to characterize the proc-
ess of zinc homeostasis in its entirety. Much is known, yet much more remains to 
be discovered. Several ZIP and CDF proteins remain uncharacterized. In addition, 
improved structural data is needed to elucidate the chemical mechanisms by which 
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Zn2+ is transported or sensed. New avenues of research will include the complete 
characterization of the zinc proteome and further studies on the transcriptional ef-
fects of imbalances in zinc homeostasis. New Zn2+-specific fluorescent probes will 
be invaluable in defining the role of Zn2+ as a signaling molecule. When appropri-
ate, extrapolation of the lessons learned from yeast will yield a better understand-
ing of zinc metabolism in humans. 
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